Cargando…

An in vitro model for studying CNS white matter: functional properties and experimental approaches

The normal development and maintenance of CNS white matter, and its responses to disease and injury, are defined by synergies between axons, oligodendrocytes, astrocytes and microglia, and further influenced by peripheral components such as the gut microbiome and the endocrine and immune systems. Co...

Descripción completa

Detalles Bibliográficos
Autores principales: Bijland, Silvia, Thomson, Gemma, Euston, Matthew, Michail, Kyriakos, Thümmler, Katja, Mücklisch, Steve, Crawford, Colin L., Barnett, Susan C., McLaughlin, Mark, Anderson, T. James, Linington, Christopher, Brown, Euan R., Kalkman, Eric R., Edgar, Julia M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: F1000 Research Limited 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6489523/
https://www.ncbi.nlm.nih.gov/pubmed/31069065
http://dx.doi.org/10.12688/f1000research.16802.1
_version_ 1783414837036974080
author Bijland, Silvia
Thomson, Gemma
Euston, Matthew
Michail, Kyriakos
Thümmler, Katja
Mücklisch, Steve
Crawford, Colin L.
Barnett, Susan C.
McLaughlin, Mark
Anderson, T. James
Linington, Christopher
Brown, Euan R.
Kalkman, Eric R.
Edgar, Julia M.
author_facet Bijland, Silvia
Thomson, Gemma
Euston, Matthew
Michail, Kyriakos
Thümmler, Katja
Mücklisch, Steve
Crawford, Colin L.
Barnett, Susan C.
McLaughlin, Mark
Anderson, T. James
Linington, Christopher
Brown, Euan R.
Kalkman, Eric R.
Edgar, Julia M.
author_sort Bijland, Silvia
collection PubMed
description The normal development and maintenance of CNS white matter, and its responses to disease and injury, are defined by synergies between axons, oligodendrocytes, astrocytes and microglia, and further influenced by peripheral components such as the gut microbiome and the endocrine and immune systems. Consequently, mechanistic insights, therapeutic approaches and safety tests rely ultimately on in vivo models and clinical trials. However, in vitro models that replicate the cellular complexity of the CNS can inform these approaches, reducing costs and minimising the use of human material or experimental animals; in line with the principles of the 3Rs. Using electrophysiology, pharmacology, time-lapse imaging, and immunological assays, we demonstrate that murine spinal cord-derived myelinating cell cultures recapitulate spinal-like electrical activity and innate CNS immune functions, including responses to disease-relevant myelin debris and pathogen associated molecular patterns (PAMPs).  Further, we show they are (i) amenable to siRNA making them suitable for testing gene-silencing strategies; (ii) can be established on microelectrode arrays (MEAs) for electrophysiological studies; and (iii) are compatible with multi-well microplate formats for semi-high throughput screens, maximising information output whilst further reducing animal use. We provide protocols for each of these. Together, these advances increase the utility of this in vitro tool for studying normal and pathological development and function of white matter, and for screening therapeutic molecules or gene targets for diseases such as multiple sclerosis, motor neuron disease or spinal cord injury, whilst avoiding in vivo approaches on experimental animals.
format Online
Article
Text
id pubmed-6489523
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher F1000 Research Limited
record_format MEDLINE/PubMed
spelling pubmed-64895232019-05-07 An in vitro model for studying CNS white matter: functional properties and experimental approaches Bijland, Silvia Thomson, Gemma Euston, Matthew Michail, Kyriakos Thümmler, Katja Mücklisch, Steve Crawford, Colin L. Barnett, Susan C. McLaughlin, Mark Anderson, T. James Linington, Christopher Brown, Euan R. Kalkman, Eric R. Edgar, Julia M. F1000Res Method Article The normal development and maintenance of CNS white matter, and its responses to disease and injury, are defined by synergies between axons, oligodendrocytes, astrocytes and microglia, and further influenced by peripheral components such as the gut microbiome and the endocrine and immune systems. Consequently, mechanistic insights, therapeutic approaches and safety tests rely ultimately on in vivo models and clinical trials. However, in vitro models that replicate the cellular complexity of the CNS can inform these approaches, reducing costs and minimising the use of human material or experimental animals; in line with the principles of the 3Rs. Using electrophysiology, pharmacology, time-lapse imaging, and immunological assays, we demonstrate that murine spinal cord-derived myelinating cell cultures recapitulate spinal-like electrical activity and innate CNS immune functions, including responses to disease-relevant myelin debris and pathogen associated molecular patterns (PAMPs).  Further, we show they are (i) amenable to siRNA making them suitable for testing gene-silencing strategies; (ii) can be established on microelectrode arrays (MEAs) for electrophysiological studies; and (iii) are compatible with multi-well microplate formats for semi-high throughput screens, maximising information output whilst further reducing animal use. We provide protocols for each of these. Together, these advances increase the utility of this in vitro tool for studying normal and pathological development and function of white matter, and for screening therapeutic molecules or gene targets for diseases such as multiple sclerosis, motor neuron disease or spinal cord injury, whilst avoiding in vivo approaches on experimental animals. F1000 Research Limited 2019-01-29 /pmc/articles/PMC6489523/ /pubmed/31069065 http://dx.doi.org/10.12688/f1000research.16802.1 Text en Copyright: © 2019 Bijland S et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Method Article
Bijland, Silvia
Thomson, Gemma
Euston, Matthew
Michail, Kyriakos
Thümmler, Katja
Mücklisch, Steve
Crawford, Colin L.
Barnett, Susan C.
McLaughlin, Mark
Anderson, T. James
Linington, Christopher
Brown, Euan R.
Kalkman, Eric R.
Edgar, Julia M.
An in vitro model for studying CNS white matter: functional properties and experimental approaches
title An in vitro model for studying CNS white matter: functional properties and experimental approaches
title_full An in vitro model for studying CNS white matter: functional properties and experimental approaches
title_fullStr An in vitro model for studying CNS white matter: functional properties and experimental approaches
title_full_unstemmed An in vitro model for studying CNS white matter: functional properties and experimental approaches
title_short An in vitro model for studying CNS white matter: functional properties and experimental approaches
title_sort in vitro model for studying cns white matter: functional properties and experimental approaches
topic Method Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6489523/
https://www.ncbi.nlm.nih.gov/pubmed/31069065
http://dx.doi.org/10.12688/f1000research.16802.1
work_keys_str_mv AT bijlandsilvia aninvitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches
AT thomsongemma aninvitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches
AT eustonmatthew aninvitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches
AT michailkyriakos aninvitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches
AT thummlerkatja aninvitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches
AT mucklischsteve aninvitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches
AT crawfordcolinl aninvitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches
AT barnettsusanc aninvitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches
AT mclaughlinmark aninvitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches
AT andersontjames aninvitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches
AT liningtonchristopher aninvitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches
AT browneuanr aninvitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches
AT kalkmanericr aninvitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches
AT edgarjuliam aninvitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches
AT bijlandsilvia invitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches
AT thomsongemma invitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches
AT eustonmatthew invitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches
AT michailkyriakos invitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches
AT thummlerkatja invitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches
AT mucklischsteve invitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches
AT crawfordcolinl invitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches
AT barnettsusanc invitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches
AT mclaughlinmark invitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches
AT andersontjames invitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches
AT liningtonchristopher invitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches
AT browneuanr invitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches
AT kalkmanericr invitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches
AT edgarjuliam invitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches