Cargando…
An in vitro model for studying CNS white matter: functional properties and experimental approaches
The normal development and maintenance of CNS white matter, and its responses to disease and injury, are defined by synergies between axons, oligodendrocytes, astrocytes and microglia, and further influenced by peripheral components such as the gut microbiome and the endocrine and immune systems. Co...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000 Research Limited
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6489523/ https://www.ncbi.nlm.nih.gov/pubmed/31069065 http://dx.doi.org/10.12688/f1000research.16802.1 |
_version_ | 1783414837036974080 |
---|---|
author | Bijland, Silvia Thomson, Gemma Euston, Matthew Michail, Kyriakos Thümmler, Katja Mücklisch, Steve Crawford, Colin L. Barnett, Susan C. McLaughlin, Mark Anderson, T. James Linington, Christopher Brown, Euan R. Kalkman, Eric R. Edgar, Julia M. |
author_facet | Bijland, Silvia Thomson, Gemma Euston, Matthew Michail, Kyriakos Thümmler, Katja Mücklisch, Steve Crawford, Colin L. Barnett, Susan C. McLaughlin, Mark Anderson, T. James Linington, Christopher Brown, Euan R. Kalkman, Eric R. Edgar, Julia M. |
author_sort | Bijland, Silvia |
collection | PubMed |
description | The normal development and maintenance of CNS white matter, and its responses to disease and injury, are defined by synergies between axons, oligodendrocytes, astrocytes and microglia, and further influenced by peripheral components such as the gut microbiome and the endocrine and immune systems. Consequently, mechanistic insights, therapeutic approaches and safety tests rely ultimately on in vivo models and clinical trials. However, in vitro models that replicate the cellular complexity of the CNS can inform these approaches, reducing costs and minimising the use of human material or experimental animals; in line with the principles of the 3Rs. Using electrophysiology, pharmacology, time-lapse imaging, and immunological assays, we demonstrate that murine spinal cord-derived myelinating cell cultures recapitulate spinal-like electrical activity and innate CNS immune functions, including responses to disease-relevant myelin debris and pathogen associated molecular patterns (PAMPs). Further, we show they are (i) amenable to siRNA making them suitable for testing gene-silencing strategies; (ii) can be established on microelectrode arrays (MEAs) for electrophysiological studies; and (iii) are compatible with multi-well microplate formats for semi-high throughput screens, maximising information output whilst further reducing animal use. We provide protocols for each of these. Together, these advances increase the utility of this in vitro tool for studying normal and pathological development and function of white matter, and for screening therapeutic molecules or gene targets for diseases such as multiple sclerosis, motor neuron disease or spinal cord injury, whilst avoiding in vivo approaches on experimental animals. |
format | Online Article Text |
id | pubmed-6489523 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | F1000 Research Limited |
record_format | MEDLINE/PubMed |
spelling | pubmed-64895232019-05-07 An in vitro model for studying CNS white matter: functional properties and experimental approaches Bijland, Silvia Thomson, Gemma Euston, Matthew Michail, Kyriakos Thümmler, Katja Mücklisch, Steve Crawford, Colin L. Barnett, Susan C. McLaughlin, Mark Anderson, T. James Linington, Christopher Brown, Euan R. Kalkman, Eric R. Edgar, Julia M. F1000Res Method Article The normal development and maintenance of CNS white matter, and its responses to disease and injury, are defined by synergies between axons, oligodendrocytes, astrocytes and microglia, and further influenced by peripheral components such as the gut microbiome and the endocrine and immune systems. Consequently, mechanistic insights, therapeutic approaches and safety tests rely ultimately on in vivo models and clinical trials. However, in vitro models that replicate the cellular complexity of the CNS can inform these approaches, reducing costs and minimising the use of human material or experimental animals; in line with the principles of the 3Rs. Using electrophysiology, pharmacology, time-lapse imaging, and immunological assays, we demonstrate that murine spinal cord-derived myelinating cell cultures recapitulate spinal-like electrical activity and innate CNS immune functions, including responses to disease-relevant myelin debris and pathogen associated molecular patterns (PAMPs). Further, we show they are (i) amenable to siRNA making them suitable for testing gene-silencing strategies; (ii) can be established on microelectrode arrays (MEAs) for electrophysiological studies; and (iii) are compatible with multi-well microplate formats for semi-high throughput screens, maximising information output whilst further reducing animal use. We provide protocols for each of these. Together, these advances increase the utility of this in vitro tool for studying normal and pathological development and function of white matter, and for screening therapeutic molecules or gene targets for diseases such as multiple sclerosis, motor neuron disease or spinal cord injury, whilst avoiding in vivo approaches on experimental animals. F1000 Research Limited 2019-01-29 /pmc/articles/PMC6489523/ /pubmed/31069065 http://dx.doi.org/10.12688/f1000research.16802.1 Text en Copyright: © 2019 Bijland S et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Method Article Bijland, Silvia Thomson, Gemma Euston, Matthew Michail, Kyriakos Thümmler, Katja Mücklisch, Steve Crawford, Colin L. Barnett, Susan C. McLaughlin, Mark Anderson, T. James Linington, Christopher Brown, Euan R. Kalkman, Eric R. Edgar, Julia M. An in vitro model for studying CNS white matter: functional properties and experimental approaches |
title | An in vitro model for studying CNS white matter: functional properties and experimental approaches |
title_full | An in vitro model for studying CNS white matter: functional properties and experimental approaches |
title_fullStr | An in vitro model for studying CNS white matter: functional properties and experimental approaches |
title_full_unstemmed | An in vitro model for studying CNS white matter: functional properties and experimental approaches |
title_short | An in vitro model for studying CNS white matter: functional properties and experimental approaches |
title_sort | in vitro model for studying cns white matter: functional properties and experimental approaches |
topic | Method Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6489523/ https://www.ncbi.nlm.nih.gov/pubmed/31069065 http://dx.doi.org/10.12688/f1000research.16802.1 |
work_keys_str_mv | AT bijlandsilvia aninvitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches AT thomsongemma aninvitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches AT eustonmatthew aninvitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches AT michailkyriakos aninvitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches AT thummlerkatja aninvitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches AT mucklischsteve aninvitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches AT crawfordcolinl aninvitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches AT barnettsusanc aninvitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches AT mclaughlinmark aninvitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches AT andersontjames aninvitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches AT liningtonchristopher aninvitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches AT browneuanr aninvitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches AT kalkmanericr aninvitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches AT edgarjuliam aninvitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches AT bijlandsilvia invitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches AT thomsongemma invitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches AT eustonmatthew invitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches AT michailkyriakos invitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches AT thummlerkatja invitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches AT mucklischsteve invitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches AT crawfordcolinl invitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches AT barnettsusanc invitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches AT mclaughlinmark invitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches AT andersontjames invitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches AT liningtonchristopher invitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches AT browneuanr invitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches AT kalkmanericr invitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches AT edgarjuliam invitromodelforstudyingcnswhitematterfunctionalpropertiesandexperimentalapproaches |