Cargando…

The relative contribution of color and material in object selection

Object perception is inherently multidimensional: information about color, material, texture and shape all guide how we interact with objects. We developed a paradigm that quantifies how two object properties (color and material) combine in object selection. On each experimental trial, observers vie...

Descripción completa

Detalles Bibliográficos
Autores principales: Radonjić, Ana, Cottaris, Nicolas P., Brainard, David H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6490924/
https://www.ncbi.nlm.nih.gov/pubmed/30978187
http://dx.doi.org/10.1371/journal.pcbi.1006950
Descripción
Sumario:Object perception is inherently multidimensional: information about color, material, texture and shape all guide how we interact with objects. We developed a paradigm that quantifies how two object properties (color and material) combine in object selection. On each experimental trial, observers viewed three blob-shaped objects—the target and two tests—and selected the test that was more similar to the target. Across trials, the target object was fixed, while the tests varied in color (across 7 levels) and material (also 7 levels, yielding 49 possible stimuli). We used an adaptive trial selection procedure (Quest+) to present, on each trial, the stimulus test pair that is most informative of underlying processes that drive selection. We present a novel computational model that allows us to describe observers’ selection data in terms of (1) the underlying perceptual stimulus representation and (2) a color-material weight, which quantifies the relative importance of color vs. material in selection. We document large individual differences in the color-material weight across the 12 observers we tested. Furthermore, our analyses reveal limits on how precisely selection data simultaneously constrain perceptual representations and the color-material weight. These limits should guide future efforts towards understanding the multidimensional nature of object perception.