Cargando…
Physical Extraction and Fast Protein Liquid Chromatography for Purifying Flagella Filament From Uropathogenic Escherichia coli for Immune Assay
Flagella are expressed on the surface of a wide range of bacteria, conferring motility and contributing to virulence and innate immune stimulation. Host-pathogen interaction studies of the roles of flagella in infection, including due to uropathogenic Escherichia coli (UPEC), have used various metho...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6491459/ https://www.ncbi.nlm.nih.gov/pubmed/31069177 http://dx.doi.org/10.3389/fcimb.2019.00118 |
_version_ | 1783414941215096832 |
---|---|
author | Acharya, Dhruba Sullivan, Matthew J. Duell, Benjamin L. Eveno, Tanguy Schembri, Mark A. Ulett, Glen C. |
author_facet | Acharya, Dhruba Sullivan, Matthew J. Duell, Benjamin L. Eveno, Tanguy Schembri, Mark A. Ulett, Glen C. |
author_sort | Acharya, Dhruba |
collection | PubMed |
description | Flagella are expressed on the surface of a wide range of bacteria, conferring motility and contributing to virulence and innate immune stimulation. Host-pathogen interaction studies of the roles of flagella in infection, including due to uropathogenic Escherichia coli (UPEC), have used various methods to purify and examine the biology of the major flagella subunit protein, FliC. These studies have offered insight into the ways in which flagella proteins interact with host cells. However, previous methods used to extract and purify FliC, such as mechanical shearing, ultracentrifugation, heterologous expression in laboratory E. coli strains, and precipitation-inducing chemical treatments have various limitations; as a result, there are few observations based on highly purified, non-denatured FliC in the literature. This is especially relevant to host-pathogen interaction studies such as immune assays that are designed to parallel, as closely as possible, naturally-occurring interactions between host cells and flagella. In this study, we sought to establish a new, carefully optimized method to extract and purify non-denatured, native FliC from the reference UPEC strain CFT073 to be suitable for immune assays. To achieve purification of FliC to homogeneity, we used a mutant CFT073 strain containing deletions in four major chaperone-usher fimbriae operons (type 1, F1C and two P fimbrial gene clusters; CFT073Δ4). A sequential flagella extraction method based on mechanical shearing, ultracentrifugation, size exclusion chromatography, protein concentration and endotoxin removal was applied to CFT073Δ4. Protein purity and integrity was assessed using SDS-PAGE, Western blots with anti-flagellin antisera, and native-PAGE. We also generated a fliC-deficient strain, CFT073Δ4ΔfliC, to enable the concurrent preparation of a suitable carrier control to be applied in downstream assays. Innate immune stimulation was examined by exposing J774A.1 macrophages to 0.05-1 μg of purified FliC for 5 h; the supernatants were analyzed for cytokines known to be induced by flagella, including TNF-α, IL-6, and IL-12; the results were assessed in the context of prior literature. Macrophage responses to purified FliC encompassed significant levels of several cytokines consistent with prior literature reports. The purification method described here establishes a new approach to examine highly purified FliC in the context of host-pathogen interaction model systems. |
format | Online Article Text |
id | pubmed-6491459 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-64914592019-05-08 Physical Extraction and Fast Protein Liquid Chromatography for Purifying Flagella Filament From Uropathogenic Escherichia coli for Immune Assay Acharya, Dhruba Sullivan, Matthew J. Duell, Benjamin L. Eveno, Tanguy Schembri, Mark A. Ulett, Glen C. Front Cell Infect Microbiol Cellular and Infection Microbiology Flagella are expressed on the surface of a wide range of bacteria, conferring motility and contributing to virulence and innate immune stimulation. Host-pathogen interaction studies of the roles of flagella in infection, including due to uropathogenic Escherichia coli (UPEC), have used various methods to purify and examine the biology of the major flagella subunit protein, FliC. These studies have offered insight into the ways in which flagella proteins interact with host cells. However, previous methods used to extract and purify FliC, such as mechanical shearing, ultracentrifugation, heterologous expression in laboratory E. coli strains, and precipitation-inducing chemical treatments have various limitations; as a result, there are few observations based on highly purified, non-denatured FliC in the literature. This is especially relevant to host-pathogen interaction studies such as immune assays that are designed to parallel, as closely as possible, naturally-occurring interactions between host cells and flagella. In this study, we sought to establish a new, carefully optimized method to extract and purify non-denatured, native FliC from the reference UPEC strain CFT073 to be suitable for immune assays. To achieve purification of FliC to homogeneity, we used a mutant CFT073 strain containing deletions in four major chaperone-usher fimbriae operons (type 1, F1C and two P fimbrial gene clusters; CFT073Δ4). A sequential flagella extraction method based on mechanical shearing, ultracentrifugation, size exclusion chromatography, protein concentration and endotoxin removal was applied to CFT073Δ4. Protein purity and integrity was assessed using SDS-PAGE, Western blots with anti-flagellin antisera, and native-PAGE. We also generated a fliC-deficient strain, CFT073Δ4ΔfliC, to enable the concurrent preparation of a suitable carrier control to be applied in downstream assays. Innate immune stimulation was examined by exposing J774A.1 macrophages to 0.05-1 μg of purified FliC for 5 h; the supernatants were analyzed for cytokines known to be induced by flagella, including TNF-α, IL-6, and IL-12; the results were assessed in the context of prior literature. Macrophage responses to purified FliC encompassed significant levels of several cytokines consistent with prior literature reports. The purification method described here establishes a new approach to examine highly purified FliC in the context of host-pathogen interaction model systems. Frontiers Media S.A. 2019-04-24 /pmc/articles/PMC6491459/ /pubmed/31069177 http://dx.doi.org/10.3389/fcimb.2019.00118 Text en Copyright © 2019 Acharya, Sullivan, Duell, Eveno, Schembri and Ulett. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Cellular and Infection Microbiology Acharya, Dhruba Sullivan, Matthew J. Duell, Benjamin L. Eveno, Tanguy Schembri, Mark A. Ulett, Glen C. Physical Extraction and Fast Protein Liquid Chromatography for Purifying Flagella Filament From Uropathogenic Escherichia coli for Immune Assay |
title | Physical Extraction and Fast Protein Liquid Chromatography for Purifying Flagella Filament From Uropathogenic Escherichia coli for Immune Assay |
title_full | Physical Extraction and Fast Protein Liquid Chromatography for Purifying Flagella Filament From Uropathogenic Escherichia coli for Immune Assay |
title_fullStr | Physical Extraction and Fast Protein Liquid Chromatography for Purifying Flagella Filament From Uropathogenic Escherichia coli for Immune Assay |
title_full_unstemmed | Physical Extraction and Fast Protein Liquid Chromatography for Purifying Flagella Filament From Uropathogenic Escherichia coli for Immune Assay |
title_short | Physical Extraction and Fast Protein Liquid Chromatography for Purifying Flagella Filament From Uropathogenic Escherichia coli for Immune Assay |
title_sort | physical extraction and fast protein liquid chromatography for purifying flagella filament from uropathogenic escherichia coli for immune assay |
topic | Cellular and Infection Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6491459/ https://www.ncbi.nlm.nih.gov/pubmed/31069177 http://dx.doi.org/10.3389/fcimb.2019.00118 |
work_keys_str_mv | AT acharyadhruba physicalextractionandfastproteinliquidchromatographyforpurifyingflagellafilamentfromuropathogenicescherichiacoliforimmuneassay AT sullivanmatthewj physicalextractionandfastproteinliquidchromatographyforpurifyingflagellafilamentfromuropathogenicescherichiacoliforimmuneassay AT duellbenjaminl physicalextractionandfastproteinliquidchromatographyforpurifyingflagellafilamentfromuropathogenicescherichiacoliforimmuneassay AT evenotanguy physicalextractionandfastproteinliquidchromatographyforpurifyingflagellafilamentfromuropathogenicescherichiacoliforimmuneassay AT schembrimarka physicalextractionandfastproteinliquidchromatographyforpurifyingflagellafilamentfromuropathogenicescherichiacoliforimmuneassay AT ulettglenc physicalextractionandfastproteinliquidchromatographyforpurifyingflagellafilamentfromuropathogenicescherichiacoliforimmuneassay |