Cargando…
Information-rich localization microscopy through machine learning
Recent years have witnessed the development of single-molecule localization microscopy as a generic tool for sampling diverse biologically relevant information at the super-resolution level. While current approaches often rely on the target-specific alteration of the point spread function to encode...
Autores principales: | Kim, Taehwan, Moon, Seonah, Xu, Ke |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6491467/ https://www.ncbi.nlm.nih.gov/pubmed/31040287 http://dx.doi.org/10.1038/s41467-019-10036-z |
Ejemplares similares
-
Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells
por: Wojcik, Michal, et al.
Publicado: (2015) -
Machine learning for cluster analysis of localization microscopy data
por: Williamson, David J., et al.
Publicado: (2020) -
Machine learning assisted quantum super-resolution microscopy
por: Kudyshev, Zhaxylyk A., et al.
Publicado: (2023) -
TDAExplore: Quantitative analysis of fluorescence microscopy images through topology-based machine learning
por: Edwards, Parker, et al.
Publicado: (2021) -
Machine learning for cross-scale microscopy of viruses
por: Petkidis, Anthony, et al.
Publicado: (2023)