Cargando…

Genetic analysis reveals unprecedented diversity of a globally-important plant pathogenic genus

Genus Botrytis contains approximately 35 species, many of which are economically-important and globally-distributed plant pathogens which collectively infect over 1,400 plant species. Recent efforts to genetically characterize genus Botrytis have revealed new species on diverse host crops around the...

Descripción completa

Detalles Bibliográficos
Autores principales: Garfinkel, Andrea R., Coats, Katie P., Sherry, Don L., Chastagner, Gary A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6491473/
https://www.ncbi.nlm.nih.gov/pubmed/31040332
http://dx.doi.org/10.1038/s41598-019-43165-y
Descripción
Sumario:Genus Botrytis contains approximately 35 species, many of which are economically-important and globally-distributed plant pathogens which collectively infect over 1,400 plant species. Recent efforts to genetically characterize genus Botrytis have revealed new species on diverse host crops around the world. In this study, surveys and subsequent genetic analysis of the glyceraldehyde-3-phosate dehydrogenase (G3PDH), heat-shock protein 60 (HSP60), DNA-dependent RNA polymerase subunit II (RPB2), and necrosis and ethylene-inducing proteins 1 and 2 (NEP1 and NEP2) genes indicated that Botrytis isolates collected from peony fields in the United States contained more species diversity than ever before reported on a single host, including up to 10 potentially novel species. Together, up to 16 different phylogenetic species were found in association with peonies in the Pacific Northwest, which is over a third of the total number of species that are currently named. Furthermore, species were found on peonies in Alaska that have been described on other host plants in different parts of the world, indicating a wider geographic and host distribution than previously thought. Lastly, some isolates found on peony share sequence similarity with unnamed species found living as endophytes in weedy hosts, suggesting that the isolates found on peony have flexible lifestyles as recently discovered in the genus. Selected pathogenicity, growth, and morphological characteristics of the putatively new Botrytis species were also assessed to provide a basis for future formal description of the isolates as new species.