Cargando…

Non-uniformity smoothing of direct-driven fuel target implosion by phase control in heavy ion inertial fusion

We have proposed a dynamic smoothing method based on a phase control to smooth plasma non-uniformities in perturbed plasma systems. In this paper, the dynamic smoothing method is applied to a spherical direct-driven fuel target implosion in heavy ion inertial confinement fusion. We found that the wo...

Descripción completa

Detalles Bibliográficos
Autores principales: Sato, R., Kawata, S., Karino, T., Uchibori, K., Ogoyski, A. I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6491564/
https://www.ncbi.nlm.nih.gov/pubmed/31040392
http://dx.doi.org/10.1038/s41598-019-43221-7
Descripción
Sumario:We have proposed a dynamic smoothing method based on a phase control to smooth plasma non-uniformities in perturbed plasma systems. In this paper, the dynamic smoothing method is applied to a spherical direct-driven fuel target implosion in heavy ion inertial confinement fusion. We found that the wobbling motion of each heavy ion beam (HIB) axis induces a phase-controlled HIBs energy deposition, and consequently the phase-controlled implosion acceleration is realized, so that the HIBs irradiation non-uniformity is successfully smoothed. HIB accelerators provide a well-established performance to oscillate a HIB axis at a high frequency. In inertial confinement fusion, a fuel implosion uniformity is essentially significant for achieving the DT fuel compression and for releasing the fusion energy, and the non-uniformity of the implosion acceleration should be less than a few %. The results in this paper demonstrate that the wobbling HIBs would provide an improvement in the fuel target implosion uniformity.