Cargando…
Age-Dependent Variation of Lamina Cribrosa Displacement During the Standardized Valsalva Maneuver
Based on biomechanical theory, lamina cribrosa (LC) displacement, the key component of progressive glaucomatous change, is presumed to be dependent on intraocular pressure (IOP) as well as tissue stiffness of LC. In the performance of the Valsalva maneuver, both IOP and cerebrospinal fluid pressure...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6491605/ https://www.ncbi.nlm.nih.gov/pubmed/31040379 http://dx.doi.org/10.1038/s41598-019-43206-6 |
Sumario: | Based on biomechanical theory, lamina cribrosa (LC) displacement, the key component of progressive glaucomatous change, is presumed to be dependent on intraocular pressure (IOP) as well as tissue stiffness of LC. In the performance of the Valsalva maneuver, both IOP and cerebrospinal fluid pressure can increase. The present study investigated the age-dependent variation of LC displacement during the standardized Valsalva maneuver in healthy subjects. Sixty-three (63) eyes (age range: 20–76 years) were prospectively underwent IOP measurement and Cirrus HD-OCT optic disc scans before and during the standardized Valsalva maneuver. During the standardized Valsalva maneuver, the IOP significantly increased from 13.2 ± 2.9 mmHg to 18.6 ± 5.2 mmHg (P < 0.001). The maximal LC depth significantly decreased in the younger age groups (age: 20 s to 40 s) but not in the older age groups (age: over 50). The BMO distance did not change significantly. Younger age (P = 0.009), a smaller increase of IOP during the Valsalva maneuver (P = 0.002), and greater baseline maximal LC depth (P = 0.013) were associated with more anterior displacement of the LC during the standardized Valsalva maneuver. Taken together, age as well as translaminar pressure dynamics seems to play a crucial role in LC biomechanics. |
---|