Cargando…

N-Doped Carbon NanoWalls for Power Sources

Cycling stability and specific capacitance are the most critical features of energy sources. Nitrogen incorporation in crystalline carbon lattice allows to increase the capacitance without increasing the mass of electrodes. Despite the fact that many studies demonstrate the increase in the capacitan...

Descripción completa

Detalles Bibliográficos
Autores principales: Evlashin, Stanislav A., Maksimov, Yurii M., Dyakonov, Pavel V., Pilevsky, Andrey A., Maslakov, Konstantin I., Mankelevich, Yuri A., Voronina, Ekaterina N., Vavilov, Sergei V., Pavlov, Alexander A., Zenova, Elena V., Akhatov, Iskander S., Suetin, Nikolay V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6491647/
https://www.ncbi.nlm.nih.gov/pubmed/31040328
http://dx.doi.org/10.1038/s41598-019-43001-3
_version_ 1783414982799523840
author Evlashin, Stanislav A.
Maksimov, Yurii M.
Dyakonov, Pavel V.
Pilevsky, Andrey A.
Maslakov, Konstantin I.
Mankelevich, Yuri A.
Voronina, Ekaterina N.
Vavilov, Sergei V.
Pavlov, Alexander A.
Zenova, Elena V.
Akhatov, Iskander S.
Suetin, Nikolay V.
author_facet Evlashin, Stanislav A.
Maksimov, Yurii M.
Dyakonov, Pavel V.
Pilevsky, Andrey A.
Maslakov, Konstantin I.
Mankelevich, Yuri A.
Voronina, Ekaterina N.
Vavilov, Sergei V.
Pavlov, Alexander A.
Zenova, Elena V.
Akhatov, Iskander S.
Suetin, Nikolay V.
author_sort Evlashin, Stanislav A.
collection PubMed
description Cycling stability and specific capacitance are the most critical features of energy sources. Nitrogen incorporation in crystalline carbon lattice allows to increase the capacitance without increasing the mass of electrodes. Despite the fact that many studies demonstrate the increase in the capacitance of energy sources after nitrogen incorporation, the mechanism capacitance increase is still unclear. Herein, we demonstrate the simple approach of plasma treatment of carbon structures, which leads to incorporation of 3 at.% nitrogen into Carbon NanoWalls. These structures have huge specific surface area and can be used for supercapacitor fabrication. After plasma treatment, the specific capacitance of Carbon NanoWalls increased and reached 600 F g(−1). Moreover, we made a novel DFT simulation which explains the mechanism of nitrogen incorporation into the carbon lattice. This work paves the way to develop flexible thin film supercapacitors based on carbon nanowalls.
format Online
Article
Text
id pubmed-6491647
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-64916472019-05-17 N-Doped Carbon NanoWalls for Power Sources Evlashin, Stanislav A. Maksimov, Yurii M. Dyakonov, Pavel V. Pilevsky, Andrey A. Maslakov, Konstantin I. Mankelevich, Yuri A. Voronina, Ekaterina N. Vavilov, Sergei V. Pavlov, Alexander A. Zenova, Elena V. Akhatov, Iskander S. Suetin, Nikolay V. Sci Rep Article Cycling stability and specific capacitance are the most critical features of energy sources. Nitrogen incorporation in crystalline carbon lattice allows to increase the capacitance without increasing the mass of electrodes. Despite the fact that many studies demonstrate the increase in the capacitance of energy sources after nitrogen incorporation, the mechanism capacitance increase is still unclear. Herein, we demonstrate the simple approach of plasma treatment of carbon structures, which leads to incorporation of 3 at.% nitrogen into Carbon NanoWalls. These structures have huge specific surface area and can be used for supercapacitor fabrication. After plasma treatment, the specific capacitance of Carbon NanoWalls increased and reached 600 F g(−1). Moreover, we made a novel DFT simulation which explains the mechanism of nitrogen incorporation into the carbon lattice. This work paves the way to develop flexible thin film supercapacitors based on carbon nanowalls. Nature Publishing Group UK 2019-04-30 /pmc/articles/PMC6491647/ /pubmed/31040328 http://dx.doi.org/10.1038/s41598-019-43001-3 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Evlashin, Stanislav A.
Maksimov, Yurii M.
Dyakonov, Pavel V.
Pilevsky, Andrey A.
Maslakov, Konstantin I.
Mankelevich, Yuri A.
Voronina, Ekaterina N.
Vavilov, Sergei V.
Pavlov, Alexander A.
Zenova, Elena V.
Akhatov, Iskander S.
Suetin, Nikolay V.
N-Doped Carbon NanoWalls for Power Sources
title N-Doped Carbon NanoWalls for Power Sources
title_full N-Doped Carbon NanoWalls for Power Sources
title_fullStr N-Doped Carbon NanoWalls for Power Sources
title_full_unstemmed N-Doped Carbon NanoWalls for Power Sources
title_short N-Doped Carbon NanoWalls for Power Sources
title_sort n-doped carbon nanowalls for power sources
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6491647/
https://www.ncbi.nlm.nih.gov/pubmed/31040328
http://dx.doi.org/10.1038/s41598-019-43001-3
work_keys_str_mv AT evlashinstanislava ndopedcarbonnanowallsforpowersources
AT maksimovyuriim ndopedcarbonnanowallsforpowersources
AT dyakonovpavelv ndopedcarbonnanowallsforpowersources
AT pilevskyandreya ndopedcarbonnanowallsforpowersources
AT maslakovkonstantini ndopedcarbonnanowallsforpowersources
AT mankelevichyuria ndopedcarbonnanowallsforpowersources
AT voroninaekaterinan ndopedcarbonnanowallsforpowersources
AT vavilovsergeiv ndopedcarbonnanowallsforpowersources
AT pavlovalexandera ndopedcarbonnanowallsforpowersources
AT zenovaelenav ndopedcarbonnanowallsforpowersources
AT akhatoviskanders ndopedcarbonnanowallsforpowersources
AT suetinnikolayv ndopedcarbonnanowallsforpowersources