Cargando…
Dilated Dense U-Net for Infant Hippocampus Subfield Segmentation
Accurate and automatic segmentation of infant hippocampal subfields from magnetic resonance (MR) images is an important step for studying memory related infant neurological diseases. However, existing hippocampal subfield segmentation methods were generally designed based on adult subjects, and woul...
Autores principales: | Zhu, Hancan, Shi, Feng, Wang, Li, Hung, Sheng-Che, Chen, Meng-Hsiang, Wang, Shuai, Lin, Weili, Shen, Dinggang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6491864/ https://www.ncbi.nlm.nih.gov/pubmed/31068797 http://dx.doi.org/10.3389/fninf.2019.00030 |
Ejemplares similares
-
Boundary Aware Semantic Segmentation using Pyramid-dilated Dense U-Net for Lung Segmentation in Computed Tomography Images
por: Agnes, S. Akila
Publicado: (2023) -
A novel deep learning based hippocampus subfield segmentation method
por: Manjón, José V., et al.
Publicado: (2022) -
DCAU-Net: dense convolutional attention U-Net for segmentation of intracranial aneurysm images
por: Yuan, Wenwen, et al.
Publicado: (2022) -
Dense U-net Based on Patch-Based Learning for Retinal Vessel Segmentation
por: Wang, Chang, et al.
Publicado: (2019) -
Correction: DCAU-Net: dense convolutional attention U-Net for segmentation of intracranial aneurysm images
por: Yuan, Wenwen, et al.
Publicado: (2022)