Cargando…
An Ensemble Strategy to Predict Prognosis in Ovarian Cancer Based on Gene Modules
Due to the high heterogeneity and complexity of cancer, it is still a challenge to predict the prognosis of cancer patients. In this work, we used a clustering algorithm to divide patients into different subtypes in order to reduce the heterogeneity of the cancer patients in each subtype. Based on t...
Autores principales: | Gao, Yi-Cheng, Zhou, Xiong-Hui, Zhang, Wen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6491874/ https://www.ncbi.nlm.nih.gov/pubmed/31068972 http://dx.doi.org/10.3389/fgene.2019.00366 |
Ejemplares similares
-
Three Genes Predict Prognosis in Microenvironment of Ovarian Cancer
por: Guo, Ya, et al.
Publicado: (2020) -
Comprehensive Analysis of the Tumor Microenvironment and Ferroptosis-Related Genes Predict Prognosis with Ovarian Cancer
por: Li, Xiao-xue, et al.
Publicado: (2021) -
Predicting Drug-Disease Association Based on Ensemble Strategy
por: Wang, Jianlin, et al.
Publicado: (2021) -
A Novel Six-Gene Signature for Prognosis Prediction in Ovarian Cancer
por: Pan, Xin, et al.
Publicado: (2020) -
Identification of a Gene Signature of Cancer-Associated Fibroblasts to Predict Prognosis in Ovarian Cancer
por: Zeng, Li, et al.
Publicado: (2022)