Cargando…

Non-overlapping and Inverse Associations Between the Sexes in Structural Brain-Trait Associations

Personality reflects the set of psychological traits and mechanisms characteristic for an individual. The brain-trait association between personality and gray matter volume (GMv) has been well studied. However, a recent study has shown that brain structure-personality relationships are highly depend...

Descripción completa

Detalles Bibliográficos
Autores principales: Stam, Daphne, Huang, Yun-An, Van den Stock, Jan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6491880/
https://www.ncbi.nlm.nih.gov/pubmed/31105624
http://dx.doi.org/10.3389/fpsyg.2019.00904
Descripción
Sumario:Personality reflects the set of psychological traits and mechanisms characteristic for an individual. The brain-trait association between personality and gray matter volume (GMv) has been well studied. However, a recent study has shown that brain structure-personality relationships are highly dependent on sex. In addition, the present study investigates the role of sex on the association between temperaments and regional GMv. Sixty-six participants (33 male) completed the Temperament and Character Inventory (TCI) and underwent structural magnetic resonance brain imaging. Mann-Whitney U tests showed a significant higher score on Novelty Seeking (NS) and Reward Dependence (RD) for females, but no significant group effects were found for Harm Avoidance (HA) and Persistence (P) score. Full factor model analyses were performed to investigate sex-temperament interaction effects on GMv. This revealed increased GMv for females in the superior temporal gyrus when linked to NS, middle temporal gyrus for HA, and the insula for RD. Males displayed increased GMv compared to females relating to P in the posterior cingulate gyrus, the medial superior frontal gyrus, and the middle cingulate gyrus, compared to females. Multiple regression analysis showed clear differences between the brain regions that correlate with female subjects and the brain correlates that correlate with male subjects. No overlap was observed between sex-specific brain-trait associations. These results increase the knowledge of the role of sex on the structural neurobiology of personality and indicate that sex differences reflect structural differences observed in the normal brain. Furthermore, sex hormones seem an important underlying factor for the found sex differences in brain-trait associations. The present study indicates an important role for sex in these brain structure-personality relationships, and implies that sex should not just be added as a covariate of no interest.