Cargando…
ErbB receptor signaling directly controls oligodendrocyte progenitor cell transformation and spontaneous remyelination after spinal cord injury
We recently discovered a novel role for neuregulin‐1 (Nrg1) signaling in mediating spontaneous regenerative processes and functional repair after spinal cord injury (SCI). We revealed that Nrg1 is the molecular signal responsible for spontaneous functional remyelination of dorsal column axons by per...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6491970/ https://www.ncbi.nlm.nih.gov/pubmed/30637799 http://dx.doi.org/10.1002/glia.23586 |
_version_ | 1783415055304359936 |
---|---|
author | Bartus, Katalin Burnside, Emily R. Galino, Jorge James, Nicholas D. Bennett, David L. H. Bradbury, Elizabeth J. |
author_facet | Bartus, Katalin Burnside, Emily R. Galino, Jorge James, Nicholas D. Bennett, David L. H. Bradbury, Elizabeth J. |
author_sort | Bartus, Katalin |
collection | PubMed |
description | We recently discovered a novel role for neuregulin‐1 (Nrg1) signaling in mediating spontaneous regenerative processes and functional repair after spinal cord injury (SCI). We revealed that Nrg1 is the molecular signal responsible for spontaneous functional remyelination of dorsal column axons by peripheral nervous system (PNS)‐like Schwann cells after SCI. Here, we investigate whether Nrg1/ErbB signaling controls the unusual transformation of centrally derived progenitor cells into these functional myelinating Schwann cells after SCI using a fate‐mapping/lineage tracing approach. Specific ablation of Nrg1‐ErbB receptors in central platelet‐derived growth factor receptor alpha (PDGFRα)‐derived lineage cells (using PDGFRαCreERT2/Tomato‐red reporter mice crossed with ErbB3fl/fl/ErbB4fl/fl mice) led to a dramatic reduction in P0‐positive remyelination in the dorsal columns following spinal contusion injury. Central myelination, assessed by Olig2 and proteolipid protein expression, was unchanged. Loss of ErbB signaling in PDGFRα lineage cells also significantly impacted the degree of spontaneous locomotor recovery after SCI, particularly in tests dependent on proprioception. These data have important implications, namely (a) cells from the PDGFRα‐expressing progenitor lineage (which are presumably oligodendrocyte progenitor cells, OPCs) can differentiate into remyelinating PNS‐like Schwann cells after traumatic SCI, (b) this process is controlled by ErbB tyrosine kinase signaling, and (c) this endogenous repair mechanism has significant consequences for functional recovery after SCI. Thus, ErbB tyrosine kinase receptor signaling directly controls the transformation of OPCs from the PDGFRα‐expressing lineage into PNS‐like functional remyelinating Schwann cells after SCI. |
format | Online Article Text |
id | pubmed-6491970 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-64919702019-05-06 ErbB receptor signaling directly controls oligodendrocyte progenitor cell transformation and spontaneous remyelination after spinal cord injury Bartus, Katalin Burnside, Emily R. Galino, Jorge James, Nicholas D. Bennett, David L. H. Bradbury, Elizabeth J. Glia Research Articles We recently discovered a novel role for neuregulin‐1 (Nrg1) signaling in mediating spontaneous regenerative processes and functional repair after spinal cord injury (SCI). We revealed that Nrg1 is the molecular signal responsible for spontaneous functional remyelination of dorsal column axons by peripheral nervous system (PNS)‐like Schwann cells after SCI. Here, we investigate whether Nrg1/ErbB signaling controls the unusual transformation of centrally derived progenitor cells into these functional myelinating Schwann cells after SCI using a fate‐mapping/lineage tracing approach. Specific ablation of Nrg1‐ErbB receptors in central platelet‐derived growth factor receptor alpha (PDGFRα)‐derived lineage cells (using PDGFRαCreERT2/Tomato‐red reporter mice crossed with ErbB3fl/fl/ErbB4fl/fl mice) led to a dramatic reduction in P0‐positive remyelination in the dorsal columns following spinal contusion injury. Central myelination, assessed by Olig2 and proteolipid protein expression, was unchanged. Loss of ErbB signaling in PDGFRα lineage cells also significantly impacted the degree of spontaneous locomotor recovery after SCI, particularly in tests dependent on proprioception. These data have important implications, namely (a) cells from the PDGFRα‐expressing progenitor lineage (which are presumably oligodendrocyte progenitor cells, OPCs) can differentiate into remyelinating PNS‐like Schwann cells after traumatic SCI, (b) this process is controlled by ErbB tyrosine kinase signaling, and (c) this endogenous repair mechanism has significant consequences for functional recovery after SCI. Thus, ErbB tyrosine kinase receptor signaling directly controls the transformation of OPCs from the PDGFRα‐expressing lineage into PNS‐like functional remyelinating Schwann cells after SCI. John Wiley & Sons, Inc. 2019-01-13 2019-06 /pmc/articles/PMC6491970/ /pubmed/30637799 http://dx.doi.org/10.1002/glia.23586 Text en © 2019 The Authors. Glia published by Wiley Periodicals, Inc. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Bartus, Katalin Burnside, Emily R. Galino, Jorge James, Nicholas D. Bennett, David L. H. Bradbury, Elizabeth J. ErbB receptor signaling directly controls oligodendrocyte progenitor cell transformation and spontaneous remyelination after spinal cord injury |
title | ErbB receptor signaling directly controls oligodendrocyte progenitor cell transformation and spontaneous remyelination after spinal cord injury |
title_full | ErbB receptor signaling directly controls oligodendrocyte progenitor cell transformation and spontaneous remyelination after spinal cord injury |
title_fullStr | ErbB receptor signaling directly controls oligodendrocyte progenitor cell transformation and spontaneous remyelination after spinal cord injury |
title_full_unstemmed | ErbB receptor signaling directly controls oligodendrocyte progenitor cell transformation and spontaneous remyelination after spinal cord injury |
title_short | ErbB receptor signaling directly controls oligodendrocyte progenitor cell transformation and spontaneous remyelination after spinal cord injury |
title_sort | erbb receptor signaling directly controls oligodendrocyte progenitor cell transformation and spontaneous remyelination after spinal cord injury |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6491970/ https://www.ncbi.nlm.nih.gov/pubmed/30637799 http://dx.doi.org/10.1002/glia.23586 |
work_keys_str_mv | AT bartuskatalin erbbreceptorsignalingdirectlycontrolsoligodendrocyteprogenitorcelltransformationandspontaneousremyelinationafterspinalcordinjury AT burnsideemilyr erbbreceptorsignalingdirectlycontrolsoligodendrocyteprogenitorcelltransformationandspontaneousremyelinationafterspinalcordinjury AT galinojorge erbbreceptorsignalingdirectlycontrolsoligodendrocyteprogenitorcelltransformationandspontaneousremyelinationafterspinalcordinjury AT jamesnicholasd erbbreceptorsignalingdirectlycontrolsoligodendrocyteprogenitorcelltransformationandspontaneousremyelinationafterspinalcordinjury AT bennettdavidlh erbbreceptorsignalingdirectlycontrolsoligodendrocyteprogenitorcelltransformationandspontaneousremyelinationafterspinalcordinjury AT bradburyelizabethj erbbreceptorsignalingdirectlycontrolsoligodendrocyteprogenitorcelltransformationandspontaneousremyelinationafterspinalcordinjury |