Cargando…
Predictive modeling of schizophrenia from genomic data: Comparison of polygenic risk score with kernel support vector machines approach
A major controversy in psychiatric genetics is whether nonadditive genetic interaction effects contribute to the risk of highly polygenic disorders. We applied a support vector machines (SVMs) approach, which is capable of building linear and nonlinear models using kernel methods, to classify cases...
Autores principales: | Vivian‐Griffiths, Timothy, Baker, Emily, Schmidt, Karl M., Bracher‐Smith, Matthew, Walters, James, Artemiou, Andreas, Holmans, Peter, O'Donovan, Michael C., Owen, Michael J., Pocklington, Andrew, Escott‐Price, Valentina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6492016/ https://www.ncbi.nlm.nih.gov/pubmed/30516002 http://dx.doi.org/10.1002/ajmg.b.32705 |
Ejemplares similares
-
Gender differences in CNV burden do not confound schizophrenia CNV associations
por: Han, Jun, et al.
Publicado: (2016) -
POLARIS: Polygenic LD‐adjusted risk score approach for set‐based analysis of GWAS data
por: Baker, Emily, et al.
Publicado: (2018) -
Associations Between Schizophrenia Polygenic Liability, Symptom Dimensions, and Cognitive Ability in Schizophrenia
por: Legge, Sophie E., et al.
Publicado: (2021) -
A transcriptome-wide association study implicates specific pre- and post-synaptic abnormalities in schizophrenia
por: Hall, Lynsey S, et al.
Publicado: (2020) -
Machine learning for prediction of schizophrenia using genetic and demographic factors in the UK biobank
por: Bracher-Smith, Matthew, et al.
Publicado: (2022)