Cargando…
Investigation of one‐stage meta‐analysis methods for joint longitudinal and time‐to‐event data through simulation and real data application
Background: Joint modeling of longitudinal and time‐to‐event data is often advantageous over separate longitudinal or time‐to‐event analyses as it can account for study dropout, error in longitudinally measured covariates, and correlation between longitudinal and time‐to‐event outcomes. The current...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6492085/ https://www.ncbi.nlm.nih.gov/pubmed/30209815 http://dx.doi.org/10.1002/sim.7961 |
_version_ | 1783415077839306752 |
---|---|
author | Sudell, Maria Kolamunnage‐Dona, Ruwanthi Gueyffier, François Tudur Smith, Catrin |
author_facet | Sudell, Maria Kolamunnage‐Dona, Ruwanthi Gueyffier, François Tudur Smith, Catrin |
author_sort | Sudell, Maria |
collection | PubMed |
description | Background: Joint modeling of longitudinal and time‐to‐event data is often advantageous over separate longitudinal or time‐to‐event analyses as it can account for study dropout, error in longitudinally measured covariates, and correlation between longitudinal and time‐to‐event outcomes. The current literature on joint modeling focuses mainly on the analysis of single studies with a lack of methods available for the meta‐analysis of joint data from multiple studies. Methods: We investigate a variety of one‐stage methods for the meta‐analysis of joint longitudinal and time‐to‐event outcome data. These methods are applied to the INDANA dataset to investigate longitudinally measured systolic blood pressure, with each of time to death, time to myocardial infarction, and time to stroke. Results are compared to separate longitudinal or time‐to‐event meta‐analyses. A simulation study is conducted to contrast separate versus joint analyses over a range of scenarios. Results: The performance of the examined one‐stage joint meta‐analytic models varied. Models that accounted for between study heterogeneity performed better than models that ignored it. Of the examined methods to account for between study heterogeneity, under the examined association structure, fixed effect approaches appeared preferable, whereas methods involving a baseline hazard stratified by study were least time intensive. Conclusions: One‐stage joint meta‐analytic models that accounted for between study heterogeneity using a mix of fixed effects or a stratified baseline hazard were reliable; however, models examined that included study level random effects in the association structure were less reliable. |
format | Online Article Text |
id | pubmed-6492085 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-64920852019-05-06 Investigation of one‐stage meta‐analysis methods for joint longitudinal and time‐to‐event data through simulation and real data application Sudell, Maria Kolamunnage‐Dona, Ruwanthi Gueyffier, François Tudur Smith, Catrin Stat Med Research Articles Background: Joint modeling of longitudinal and time‐to‐event data is often advantageous over separate longitudinal or time‐to‐event analyses as it can account for study dropout, error in longitudinally measured covariates, and correlation between longitudinal and time‐to‐event outcomes. The current literature on joint modeling focuses mainly on the analysis of single studies with a lack of methods available for the meta‐analysis of joint data from multiple studies. Methods: We investigate a variety of one‐stage methods for the meta‐analysis of joint longitudinal and time‐to‐event outcome data. These methods are applied to the INDANA dataset to investigate longitudinally measured systolic blood pressure, with each of time to death, time to myocardial infarction, and time to stroke. Results are compared to separate longitudinal or time‐to‐event meta‐analyses. A simulation study is conducted to contrast separate versus joint analyses over a range of scenarios. Results: The performance of the examined one‐stage joint meta‐analytic models varied. Models that accounted for between study heterogeneity performed better than models that ignored it. Of the examined methods to account for between study heterogeneity, under the examined association structure, fixed effect approaches appeared preferable, whereas methods involving a baseline hazard stratified by study were least time intensive. Conclusions: One‐stage joint meta‐analytic models that accounted for between study heterogeneity using a mix of fixed effects or a stratified baseline hazard were reliable; however, models examined that included study level random effects in the association structure were less reliable. John Wiley and Sons Inc. 2018-09-12 2019-01-30 /pmc/articles/PMC6492085/ /pubmed/30209815 http://dx.doi.org/10.1002/sim.7961 Text en © 2018 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Sudell, Maria Kolamunnage‐Dona, Ruwanthi Gueyffier, François Tudur Smith, Catrin Investigation of one‐stage meta‐analysis methods for joint longitudinal and time‐to‐event data through simulation and real data application |
title | Investigation of one‐stage meta‐analysis methods for joint longitudinal and time‐to‐event data through simulation and real data application |
title_full | Investigation of one‐stage meta‐analysis methods for joint longitudinal and time‐to‐event data through simulation and real data application |
title_fullStr | Investigation of one‐stage meta‐analysis methods for joint longitudinal and time‐to‐event data through simulation and real data application |
title_full_unstemmed | Investigation of one‐stage meta‐analysis methods for joint longitudinal and time‐to‐event data through simulation and real data application |
title_short | Investigation of one‐stage meta‐analysis methods for joint longitudinal and time‐to‐event data through simulation and real data application |
title_sort | investigation of one‐stage meta‐analysis methods for joint longitudinal and time‐to‐event data through simulation and real data application |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6492085/ https://www.ncbi.nlm.nih.gov/pubmed/30209815 http://dx.doi.org/10.1002/sim.7961 |
work_keys_str_mv | AT sudellmaria investigationofonestagemetaanalysismethodsforjointlongitudinalandtimetoeventdatathroughsimulationandrealdataapplication AT kolamunnagedonaruwanthi investigationofonestagemetaanalysismethodsforjointlongitudinalandtimetoeventdatathroughsimulationandrealdataapplication AT gueyffierfrancois investigationofonestagemetaanalysismethodsforjointlongitudinalandtimetoeventdatathroughsimulationandrealdataapplication AT tudursmithcatrin investigationofonestagemetaanalysismethodsforjointlongitudinalandtimetoeventdatathroughsimulationandrealdataapplication |