Cargando…
Investigation of one‐stage meta‐analysis methods for joint longitudinal and time‐to‐event data through simulation and real data application
Background: Joint modeling of longitudinal and time‐to‐event data is often advantageous over separate longitudinal or time‐to‐event analyses as it can account for study dropout, error in longitudinally measured covariates, and correlation between longitudinal and time‐to‐event outcomes. The current...
Autores principales: | Sudell, Maria, Kolamunnage‐Dona, Ruwanthi, Gueyffier, François, Tudur Smith, Catrin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6492085/ https://www.ncbi.nlm.nih.gov/pubmed/30209815 http://dx.doi.org/10.1002/sim.7961 |
Ejemplares similares
-
Investigation of 2‐stage meta‐analysis methods for joint longitudinal and time‐to‐event data through simulation and real data application
por: Sudell, Maria, et al.
Publicado: (2017) -
Joint models for longitudinal and time-to-event data: a review of reporting quality with a view to meta-analysis
por: Sudell, Maria, et al.
Publicado: (2016) -
Correction to: joint models for longitudinal and time-to-event data: a review of reporting quality with a view to meta-analysis
por: Sudell, Maria, et al.
Publicado: (2018) -
Bayesian joint modelling of longitudinal and time to event data: a methodological review
por: Alsefri, Maha, et al.
Publicado: (2020) -
Sample size formula for joint modelling of longitudinal and time-to-event data in clinical trials
por: Powney, Matthew, et al.
Publicado: (2013)