Cargando…
Using deep autoencoders to identify abnormal brain structural patterns in neuropsychiatric disorders: A large‐scale multi‐sample study
Machine learning is becoming an increasingly popular approach for investigating spatially distributed and subtle neuroanatomical alterations in brain‐based disorders. However, some machine learning models have been criticized for requiring a large number of cases in each experimental group, and for...
Autores principales: | Pinaya, Walter H. L., Mechelli, Andrea, Sato, João R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6492107/ https://www.ncbi.nlm.nih.gov/pubmed/30311316 http://dx.doi.org/10.1002/hbm.24423 |
Ejemplares similares
-
Deep clustering of small molecules at large-scale via variational autoencoder embedding and K-means
por: Hadipour, Hamid, et al.
Publicado: (2022) -
Inferring the heritability of large-scale functional networks with a multivariate ACE modeling approach
por: Ribeiro, Fernanda L., et al.
Publicado: (2021) -
Abnormal ECG detection based on an adversarial autoencoder
por: Shan, Lianfeng, et al.
Publicado: (2022) -
Deep autoencoder-powered pattern identification of sleep disturbance using multi-site cross-sectional survey data
por: Lee, Hyeonhoon, et al.
Publicado: (2022) -
Abnormal Detection in Big Data Video with an Improved Autoencoder
por: Bian, Yihan, et al.
Publicado: (2021)