Cargando…
Population‐calibrated multiple imputation for a binary/categorical covariate in categorical regression models
Multiple imputation (MI) has become popular for analyses with missing data in medical research. The standard implementation of MI is based on the assumption of data being missing at random (MAR). However, for missing data generated by missing not at random mechanisms, MI performed assuming MAR might...
Autores principales: | Pham, Tra My, Carpenter, James R, Morris, Tim P, Wood, Angela M, Petersen, Irene |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6492126/ https://www.ncbi.nlm.nih.gov/pubmed/30328123 http://dx.doi.org/10.1002/sim.8004 |
Ejemplares similares
-
Methods for significance testing of categorical covariates in logistic regression models after multiple imputation: power and applicability analysis
por: Eekhout, Iris, et al.
Publicado: (2017) -
Weighted multiple imputation of ethnicity data that are missing not at random in primary care databases
por: Pham, Tra My, et al.
Publicado: (2017) -
Regression analysis with categorized regression calibrated exposure: some interesting findings
por: Dalen, Ingvild, et al.
Publicado: (2006) -
Multiple imputation in Cox regression when there are time‐varying effects of covariates
por: Keogh, Ruth H., et al.
Publicado: (2018) -
Multiple imputation for an incomplete covariate that is a ratio
por: Morris, Tim P, et al.
Publicado: (2014)