Cargando…
Extension of the yeast metabolic model to include iron metabolism and its use to estimate global levels of iron‐recruiting enzyme abundance from cofactor requirements
Metabolic networks adapt to changes in their environment by modulating the activity of their enzymes and transporters; often by changing their abundance. Understanding such quantitative changes can shed light onto how metabolic adaptation works, or how it can fail and lead to a metabolically dysfunc...
Autores principales: | Dikicioglu, Duygu, Oliver, Stephen G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6492170/ https://www.ncbi.nlm.nih.gov/pubmed/30578666 http://dx.doi.org/10.1002/bit.26905 |
Ejemplares similares
-
Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism
por: Marelja, Zvonimir, et al.
Publicado: (2018) -
Divergence of Iron Metabolism in Wild Malaysian Yeast
por: Lee, Hana N., et al.
Publicado: (2013) -
Biomass composition: the “elephant in the room” of metabolic modelling
por: Dikicioglu, Duygu, et al.
Publicado: (2015) -
Like iron in the blood of the people: the requirement for heme trafficking in iron metabolism
por: Korolnek, Tamara, et al.
Publicado: (2014) -
Metabolic modeling to identify engineering targets for Komagataella phaffii: The effect of biomass composition on gene target identification
por: Cankorur‐Cetinkaya, Ayca, et al.
Publicado: (2017)