Cargando…
A comparison of model selection methods for prediction in the presence of multiply imputed data
Many approaches for variable selection with multiply imputed data in the development of a prognostic model have been proposed. However, no method prevails as uniformly best. We conducted a simulation study with a binary outcome and a logistic regression model to compare two classes of variable selec...
Autores principales: | Thao, Le Thi Phuong, Geskus, Ronald |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6492211/ https://www.ncbi.nlm.nih.gov/pubmed/30353591 http://dx.doi.org/10.1002/bimj.201700232 |
Ejemplares similares
-
Validation of prediction models based on lasso regression with multiply imputed data
por: Musoro, Jammbe Z, et al.
Publicado: (2014) -
An improved framework to predict river flow time series data
por: Nazir, Hafiza Mamona, et al.
Publicado: (2019) -
Improving the prediction accuracy of river inflow using two data pre-processing techniques coupled with data-driven model
por: Nazir, Hafiza Mamona, et al.
Publicado: (2019) -
Estimation methods for the ratio of medians of three-parameter lognormal distributions containing zero values and their application to wind speed data from northern Thailand
por: Maneerat, Patcharee, et al.
Publicado: (2022) -
A data integration framework for spatial interpolation of temperature observations using climate model data
por: Economou, Theo, et al.
Publicado: (2023)