Cargando…
Evaluation of SNP Genotyping in Alpacas Using the Bovine HD Genotyping Beadchip
Alpacas are one of four South American Camelid species living in the highlands of the Andes. Production of alpaca fiber contributes to the economy of the region and the livelihood of many rural families. Fiber quantity and quality are important and in need of a modern breeding program based on genom...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6492526/ https://www.ncbi.nlm.nih.gov/pubmed/31105741 http://dx.doi.org/10.3389/fgene.2019.00361 |
_version_ | 1783415156911374336 |
---|---|
author | More, Manuel Gutiérrez, Gustavo Rothschild, Max Bertolini, Francesca Ponce de León, F. Abel |
author_facet | More, Manuel Gutiérrez, Gustavo Rothschild, Max Bertolini, Francesca Ponce de León, F. Abel |
author_sort | More, Manuel |
collection | PubMed |
description | Alpacas are one of four South American Camelid species living in the highlands of the Andes. Production of alpaca fiber contributes to the economy of the region and the livelihood of many rural families. Fiber quantity and quality are important and in need of a modern breeding program based on genomic selection to accelerate genetic gain. To achieve this is necessary to discover enough molecular markers, single nucleotide polymorphisms (SNPs) in particular, to provide genome coverage and facilitate genome wide association studies to fiber production characteristics. The aim of this study was to discover alpaca SNPs by genotyping forty alpaca DNA samples using the BovineHD Genotyping Beadchip. Data analysis was performed with GenomeStudio (Illumina) software. Because different filters and thresholds are reported in the literature we investigated the effects of no-call threshold (≥0.05, ≥0.15, and ≥0.25) and call frequency (≥0.9 and =1.0) in identifying positive SNPs. Average GC Scores, calculated as the average of the 10% and 50% GenCall scores for each SNP (≥0.70) and the GenTrain score ≥ 0.25 parameters were applied to all comparisons. SNPs with minor allele frequency (MAF) ≥ 0.05 or ≥ 0.01 were retained. Since detection of SNPs is based on the stable binding of oligonucleotide probes to the target DNA immediately adjacent to the variant nucleotide, all positive SNP flanking sequences showing perfect alignments between the bovine and alpaca genomes for the first 21 or 26 nucleotides flanking the variant nucleotide at either side were selected. Only SNPs localized in one scaffold were assumed unique. Unique SNPs identified in both reference genomes were kept and mapped on the Vicugna_pacos 2.0.2 genome. The effects of the no-call threshold ≥ 0.25, call frequency = 1 and average GC ≥ 0.7 were meaningful and identified 6756 SNPs of which 400 were unique and polymorphic (MAF ≥ 0.01). Assignment to alpaca chromosomes was possible for 292 SNPs. Likewise, 209 SNPs were localized in 202 alpaca gene loci and 29 of these share the same loci with the dromedary. Interestingly, 69 of 400 alpaca SNPs have 100% similarity with dromedary. |
format | Online Article Text |
id | pubmed-6492526 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-64925262019-05-17 Evaluation of SNP Genotyping in Alpacas Using the Bovine HD Genotyping Beadchip More, Manuel Gutiérrez, Gustavo Rothschild, Max Bertolini, Francesca Ponce de León, F. Abel Front Genet Genetics Alpacas are one of four South American Camelid species living in the highlands of the Andes. Production of alpaca fiber contributes to the economy of the region and the livelihood of many rural families. Fiber quantity and quality are important and in need of a modern breeding program based on genomic selection to accelerate genetic gain. To achieve this is necessary to discover enough molecular markers, single nucleotide polymorphisms (SNPs) in particular, to provide genome coverage and facilitate genome wide association studies to fiber production characteristics. The aim of this study was to discover alpaca SNPs by genotyping forty alpaca DNA samples using the BovineHD Genotyping Beadchip. Data analysis was performed with GenomeStudio (Illumina) software. Because different filters and thresholds are reported in the literature we investigated the effects of no-call threshold (≥0.05, ≥0.15, and ≥0.25) and call frequency (≥0.9 and =1.0) in identifying positive SNPs. Average GC Scores, calculated as the average of the 10% and 50% GenCall scores for each SNP (≥0.70) and the GenTrain score ≥ 0.25 parameters were applied to all comparisons. SNPs with minor allele frequency (MAF) ≥ 0.05 or ≥ 0.01 were retained. Since detection of SNPs is based on the stable binding of oligonucleotide probes to the target DNA immediately adjacent to the variant nucleotide, all positive SNP flanking sequences showing perfect alignments between the bovine and alpaca genomes for the first 21 or 26 nucleotides flanking the variant nucleotide at either side were selected. Only SNPs localized in one scaffold were assumed unique. Unique SNPs identified in both reference genomes were kept and mapped on the Vicugna_pacos 2.0.2 genome. The effects of the no-call threshold ≥ 0.25, call frequency = 1 and average GC ≥ 0.7 were meaningful and identified 6756 SNPs of which 400 were unique and polymorphic (MAF ≥ 0.01). Assignment to alpaca chromosomes was possible for 292 SNPs. Likewise, 209 SNPs were localized in 202 alpaca gene loci and 29 of these share the same loci with the dromedary. Interestingly, 69 of 400 alpaca SNPs have 100% similarity with dromedary. Frontiers Media S.A. 2019-04-24 /pmc/articles/PMC6492526/ /pubmed/31105741 http://dx.doi.org/10.3389/fgene.2019.00361 Text en Copyright © 2019 More, Gutiérrez, Rothschild, Bertolini and Ponce de León. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Genetics More, Manuel Gutiérrez, Gustavo Rothschild, Max Bertolini, Francesca Ponce de León, F. Abel Evaluation of SNP Genotyping in Alpacas Using the Bovine HD Genotyping Beadchip |
title | Evaluation of SNP Genotyping in Alpacas Using the Bovine HD Genotyping Beadchip |
title_full | Evaluation of SNP Genotyping in Alpacas Using the Bovine HD Genotyping Beadchip |
title_fullStr | Evaluation of SNP Genotyping in Alpacas Using the Bovine HD Genotyping Beadchip |
title_full_unstemmed | Evaluation of SNP Genotyping in Alpacas Using the Bovine HD Genotyping Beadchip |
title_short | Evaluation of SNP Genotyping in Alpacas Using the Bovine HD Genotyping Beadchip |
title_sort | evaluation of snp genotyping in alpacas using the bovine hd genotyping beadchip |
topic | Genetics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6492526/ https://www.ncbi.nlm.nih.gov/pubmed/31105741 http://dx.doi.org/10.3389/fgene.2019.00361 |
work_keys_str_mv | AT moremanuel evaluationofsnpgenotypinginalpacasusingthebovinehdgenotypingbeadchip AT gutierrezgustavo evaluationofsnpgenotypinginalpacasusingthebovinehdgenotypingbeadchip AT rothschildmax evaluationofsnpgenotypinginalpacasusingthebovinehdgenotypingbeadchip AT bertolinifrancesca evaluationofsnpgenotypinginalpacasusingthebovinehdgenotypingbeadchip AT poncedeleonfabel evaluationofsnpgenotypinginalpacasusingthebovinehdgenotypingbeadchip |