Cargando…
TEAD1 (TEA Domain Transcription Factor 1) Promotes Smooth Muscle Cell Proliferation Through Upregulating SLC1A5 (Solute Carrier Family 1 Member 5)-Mediated Glutamine Uptake
RATIONALE: TEAD (TEA domain transcription factor) 1—a major effector of the Hippo signaling pathway—acts as an oncoprotein in a variety of tumors. However, the function of TEAD1 in vascular smooth muscle cells (VSMCs) remains unclear. OBJECTIVE: To assess the role of TEAD1 in vascular injury–induced...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6493685/ https://www.ncbi.nlm.nih.gov/pubmed/30801233 http://dx.doi.org/10.1161/CIRCRESAHA.118.314187 |
_version_ | 1783415199614631936 |
---|---|
author | Osman, Islam He, Xiangqin Liu, Jinhua Dong, Kunzhe Wen, Tong Zhang, Fanzhi Yu, Luyi Hu, Guoqing Xin, Hongbo Zhang, Wei Zhou, Jiliang |
author_facet | Osman, Islam He, Xiangqin Liu, Jinhua Dong, Kunzhe Wen, Tong Zhang, Fanzhi Yu, Luyi Hu, Guoqing Xin, Hongbo Zhang, Wei Zhou, Jiliang |
author_sort | Osman, Islam |
collection | PubMed |
description | RATIONALE: TEAD (TEA domain transcription factor) 1—a major effector of the Hippo signaling pathway—acts as an oncoprotein in a variety of tumors. However, the function of TEAD1 in vascular smooth muscle cells (VSMCs) remains unclear. OBJECTIVE: To assess the role of TEAD1 in vascular injury–induced smooth muscle proliferation and delineate the mechanisms underlying its action. METHODS AND RESULTS: We found that TEAD1 expression is enhanced in mouse femoral artery after wire injury and correlates with the activation of mTORC1 (mechanistic target of rapamycin complex 1) signaling in vivo. Using an inducible smooth muscle–specific Tead1 KO (knockout) mouse model, we found that specific deletion of Tead1 in adult VSMCs is sufficient to attenuate arterial injury–induced neointima formation due to inhibition of mTORC1 activation and VSMC proliferation. Furthermore, we found that TEAD1 plays a unique role in VSMCs, where it not only downregulates VSMC differentiation markers but also activates mTORC1 signaling, leading to enhanced VSMC proliferation. Using whole-transcriptome sequencing analysis, we identified Slc1a5 (solute carrier family 1 member 5)—a key glutamine transporter—as a novel TEAD1 target gene. SLC1A5 overexpression mimicked TEAD1 in promoting mTORC1 activation and VSMC proliferation. Moreover, depletion of SLC1A5 by silencing RNA or blocking SLC1A5-mediated glutamine uptake attenuated TEAD1-dependent mTORC1 activation and VSMC proliferation. CONCLUSIONS: Our study unravels a novel mechanism by which TEAD1 promotes VSMC proliferation via transcriptional induction of SLC1A5, thereby activating mTORC1 signaling and promoting neointima formation. |
format | Online Article Text |
id | pubmed-6493685 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Lippincott Williams & Wilkins |
record_format | MEDLINE/PubMed |
spelling | pubmed-64936852019-05-29 TEAD1 (TEA Domain Transcription Factor 1) Promotes Smooth Muscle Cell Proliferation Through Upregulating SLC1A5 (Solute Carrier Family 1 Member 5)-Mediated Glutamine Uptake Osman, Islam He, Xiangqin Liu, Jinhua Dong, Kunzhe Wen, Tong Zhang, Fanzhi Yu, Luyi Hu, Guoqing Xin, Hongbo Zhang, Wei Zhou, Jiliang Circ Res Molecular Medicine RATIONALE: TEAD (TEA domain transcription factor) 1—a major effector of the Hippo signaling pathway—acts as an oncoprotein in a variety of tumors. However, the function of TEAD1 in vascular smooth muscle cells (VSMCs) remains unclear. OBJECTIVE: To assess the role of TEAD1 in vascular injury–induced smooth muscle proliferation and delineate the mechanisms underlying its action. METHODS AND RESULTS: We found that TEAD1 expression is enhanced in mouse femoral artery after wire injury and correlates with the activation of mTORC1 (mechanistic target of rapamycin complex 1) signaling in vivo. Using an inducible smooth muscle–specific Tead1 KO (knockout) mouse model, we found that specific deletion of Tead1 in adult VSMCs is sufficient to attenuate arterial injury–induced neointima formation due to inhibition of mTORC1 activation and VSMC proliferation. Furthermore, we found that TEAD1 plays a unique role in VSMCs, where it not only downregulates VSMC differentiation markers but also activates mTORC1 signaling, leading to enhanced VSMC proliferation. Using whole-transcriptome sequencing analysis, we identified Slc1a5 (solute carrier family 1 member 5)—a key glutamine transporter—as a novel TEAD1 target gene. SLC1A5 overexpression mimicked TEAD1 in promoting mTORC1 activation and VSMC proliferation. Moreover, depletion of SLC1A5 by silencing RNA or blocking SLC1A5-mediated glutamine uptake attenuated TEAD1-dependent mTORC1 activation and VSMC proliferation. CONCLUSIONS: Our study unravels a novel mechanism by which TEAD1 promotes VSMC proliferation via transcriptional induction of SLC1A5, thereby activating mTORC1 signaling and promoting neointima formation. Lippincott Williams & Wilkins 2019-04-26 2019-03-20 /pmc/articles/PMC6493685/ /pubmed/30801233 http://dx.doi.org/10.1161/CIRCRESAHA.118.314187 Text en © 2019 The Authors. Circulation Research is published on behalf of the American Heart Association, Inc., by Wolters Kluwer Health, Inc. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial (http://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution, and reproduction in any medium, provided that the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Molecular Medicine Osman, Islam He, Xiangqin Liu, Jinhua Dong, Kunzhe Wen, Tong Zhang, Fanzhi Yu, Luyi Hu, Guoqing Xin, Hongbo Zhang, Wei Zhou, Jiliang TEAD1 (TEA Domain Transcription Factor 1) Promotes Smooth Muscle Cell Proliferation Through Upregulating SLC1A5 (Solute Carrier Family 1 Member 5)-Mediated Glutamine Uptake |
title | TEAD1 (TEA Domain Transcription Factor 1) Promotes Smooth Muscle Cell Proliferation Through Upregulating SLC1A5 (Solute Carrier Family 1 Member 5)-Mediated Glutamine Uptake |
title_full | TEAD1 (TEA Domain Transcription Factor 1) Promotes Smooth Muscle Cell Proliferation Through Upregulating SLC1A5 (Solute Carrier Family 1 Member 5)-Mediated Glutamine Uptake |
title_fullStr | TEAD1 (TEA Domain Transcription Factor 1) Promotes Smooth Muscle Cell Proliferation Through Upregulating SLC1A5 (Solute Carrier Family 1 Member 5)-Mediated Glutamine Uptake |
title_full_unstemmed | TEAD1 (TEA Domain Transcription Factor 1) Promotes Smooth Muscle Cell Proliferation Through Upregulating SLC1A5 (Solute Carrier Family 1 Member 5)-Mediated Glutamine Uptake |
title_short | TEAD1 (TEA Domain Transcription Factor 1) Promotes Smooth Muscle Cell Proliferation Through Upregulating SLC1A5 (Solute Carrier Family 1 Member 5)-Mediated Glutamine Uptake |
title_sort | tead1 (tea domain transcription factor 1) promotes smooth muscle cell proliferation through upregulating slc1a5 (solute carrier family 1 member 5)-mediated glutamine uptake |
topic | Molecular Medicine |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6493685/ https://www.ncbi.nlm.nih.gov/pubmed/30801233 http://dx.doi.org/10.1161/CIRCRESAHA.118.314187 |
work_keys_str_mv | AT osmanislam tead1teadomaintranscriptionfactor1promotessmoothmusclecellproliferationthroughupregulatingslc1a5solutecarrierfamily1member5mediatedglutamineuptake AT hexiangqin tead1teadomaintranscriptionfactor1promotessmoothmusclecellproliferationthroughupregulatingslc1a5solutecarrierfamily1member5mediatedglutamineuptake AT liujinhua tead1teadomaintranscriptionfactor1promotessmoothmusclecellproliferationthroughupregulatingslc1a5solutecarrierfamily1member5mediatedglutamineuptake AT dongkunzhe tead1teadomaintranscriptionfactor1promotessmoothmusclecellproliferationthroughupregulatingslc1a5solutecarrierfamily1member5mediatedglutamineuptake AT wentong tead1teadomaintranscriptionfactor1promotessmoothmusclecellproliferationthroughupregulatingslc1a5solutecarrierfamily1member5mediatedglutamineuptake AT zhangfanzhi tead1teadomaintranscriptionfactor1promotessmoothmusclecellproliferationthroughupregulatingslc1a5solutecarrierfamily1member5mediatedglutamineuptake AT yuluyi tead1teadomaintranscriptionfactor1promotessmoothmusclecellproliferationthroughupregulatingslc1a5solutecarrierfamily1member5mediatedglutamineuptake AT huguoqing tead1teadomaintranscriptionfactor1promotessmoothmusclecellproliferationthroughupregulatingslc1a5solutecarrierfamily1member5mediatedglutamineuptake AT xinhongbo tead1teadomaintranscriptionfactor1promotessmoothmusclecellproliferationthroughupregulatingslc1a5solutecarrierfamily1member5mediatedglutamineuptake AT zhangwei tead1teadomaintranscriptionfactor1promotessmoothmusclecellproliferationthroughupregulatingslc1a5solutecarrierfamily1member5mediatedglutamineuptake AT zhoujiliang tead1teadomaintranscriptionfactor1promotessmoothmusclecellproliferationthroughupregulatingslc1a5solutecarrierfamily1member5mediatedglutamineuptake |