Cargando…
The Transcription Factor ERG Regulates Super-Enhancers Associated With an Endothelial-Specific Gene Expression Program
RATIONALE: The ETS (E-26 transformation-specific) transcription factor ERG (ETS-related gene) is essential for endothelial homeostasis, driving expression of lineage genes and repressing proinflammatory genes. Loss of ERG expression is associated with diseases including atherosclerosis. ERG’s homeos...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6493686/ https://www.ncbi.nlm.nih.gov/pubmed/30892142 http://dx.doi.org/10.1161/CIRCRESAHA.118.313788 |
_version_ | 1783415199851610112 |
---|---|
author | Kalna, Viktoria Yang, Youwen Peghaire, Claire R. Frudd, Karen Hannah, Rebecca Shah, Aarti V. Osuna Almagro, Lourdes Boyle, Joseph J. Göttgens, Berthold Ferrer, Jorge Randi, Anna M. Birdsey, Graeme M. |
author_facet | Kalna, Viktoria Yang, Youwen Peghaire, Claire R. Frudd, Karen Hannah, Rebecca Shah, Aarti V. Osuna Almagro, Lourdes Boyle, Joseph J. Göttgens, Berthold Ferrer, Jorge Randi, Anna M. Birdsey, Graeme M. |
author_sort | Kalna, Viktoria |
collection | PubMed |
description | RATIONALE: The ETS (E-26 transformation-specific) transcription factor ERG (ETS-related gene) is essential for endothelial homeostasis, driving expression of lineage genes and repressing proinflammatory genes. Loss of ERG expression is associated with diseases including atherosclerosis. ERG’s homeostatic function is lineage-specific, because aberrant ERG expression in cancer is oncogenic. The molecular basis for ERG lineage-specific activity is unknown. Transcriptional regulation of lineage specificity is linked to enhancer clusters (super-enhancers). OBJECTIVE: To investigate whether ERG regulates endothelial-specific gene expression via super-enhancers. METHODS AND RESULTS: Chromatin immunoprecipitation with high-throughput sequencing in human umbilical vein endothelial cells showed that ERG binds 93% of super-enhancers ranked according to H3K27ac, a mark of active chromatin. These were associated with endothelial genes such as DLL4 (Delta-like protein 4), CLDN5 (claudin-5), VWF (von Willebrand factor), and CDH5 (VE-cadherin). Comparison between human umbilical vein endothelial cell and prostate cancer TMPRSS2 (transmembrane protease, serine-2):ERG fusion-positive human prostate epithelial cancer cell line (VCaP) cells revealed distinctive lineage-specific transcriptome and super-enhancer profiles. At a subset of endothelial super-enhancers (including DLL4 and CLDN5), loss of ERG results in significant reduction in gene expression which correlates with decreased enrichment of H3K27ac and MED (Mediator complex subunit)-1, and reduced recruitment of acetyltransferase p300. At these super-enhancers, co-occupancy of GATA2 (GATA-binding protein 2) and AP-1 (activator protein 1) is significantly lower compared with super-enhancers that remained constant following ERG inhibition. These data suggest distinct mechanisms of super-enhancer regulation in endothelial cells and highlight the unique role of ERG in controlling a core subset of super-enhancers. Most disease-associated single nucleotide polymorphisms from genome-wide association studies lie within noncoding regions and perturb transcription factor recognition sequences in relevant cell types. Analysis of genome-wide association studies data shows significant enrichment of risk variants for cardiovascular disease and other diseases, at ERG endothelial enhancers and super-enhancers. CONCLUSIONS: The transcription factor ERG promotes endothelial homeostasis via regulation of lineage-specific enhancers and super-enhancers. Enrichment of cardiovascular disease-associated single nucleotide polymorphisms at ERG super-enhancers suggests that ERG-dependent transcription modulates disease risk. |
format | Online Article Text |
id | pubmed-6493686 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Lippincott Williams & Wilkins |
record_format | MEDLINE/PubMed |
spelling | pubmed-64936862019-05-29 The Transcription Factor ERG Regulates Super-Enhancers Associated With an Endothelial-Specific Gene Expression Program Kalna, Viktoria Yang, Youwen Peghaire, Claire R. Frudd, Karen Hannah, Rebecca Shah, Aarti V. Osuna Almagro, Lourdes Boyle, Joseph J. Göttgens, Berthold Ferrer, Jorge Randi, Anna M. Birdsey, Graeme M. Circ Res Cellular Biology RATIONALE: The ETS (E-26 transformation-specific) transcription factor ERG (ETS-related gene) is essential for endothelial homeostasis, driving expression of lineage genes and repressing proinflammatory genes. Loss of ERG expression is associated with diseases including atherosclerosis. ERG’s homeostatic function is lineage-specific, because aberrant ERG expression in cancer is oncogenic. The molecular basis for ERG lineage-specific activity is unknown. Transcriptional regulation of lineage specificity is linked to enhancer clusters (super-enhancers). OBJECTIVE: To investigate whether ERG regulates endothelial-specific gene expression via super-enhancers. METHODS AND RESULTS: Chromatin immunoprecipitation with high-throughput sequencing in human umbilical vein endothelial cells showed that ERG binds 93% of super-enhancers ranked according to H3K27ac, a mark of active chromatin. These were associated with endothelial genes such as DLL4 (Delta-like protein 4), CLDN5 (claudin-5), VWF (von Willebrand factor), and CDH5 (VE-cadherin). Comparison between human umbilical vein endothelial cell and prostate cancer TMPRSS2 (transmembrane protease, serine-2):ERG fusion-positive human prostate epithelial cancer cell line (VCaP) cells revealed distinctive lineage-specific transcriptome and super-enhancer profiles. At a subset of endothelial super-enhancers (including DLL4 and CLDN5), loss of ERG results in significant reduction in gene expression which correlates with decreased enrichment of H3K27ac and MED (Mediator complex subunit)-1, and reduced recruitment of acetyltransferase p300. At these super-enhancers, co-occupancy of GATA2 (GATA-binding protein 2) and AP-1 (activator protein 1) is significantly lower compared with super-enhancers that remained constant following ERG inhibition. These data suggest distinct mechanisms of super-enhancer regulation in endothelial cells and highlight the unique role of ERG in controlling a core subset of super-enhancers. Most disease-associated single nucleotide polymorphisms from genome-wide association studies lie within noncoding regions and perturb transcription factor recognition sequences in relevant cell types. Analysis of genome-wide association studies data shows significant enrichment of risk variants for cardiovascular disease and other diseases, at ERG endothelial enhancers and super-enhancers. CONCLUSIONS: The transcription factor ERG promotes endothelial homeostasis via regulation of lineage-specific enhancers and super-enhancers. Enrichment of cardiovascular disease-associated single nucleotide polymorphisms at ERG super-enhancers suggests that ERG-dependent transcription modulates disease risk. Lippincott Williams & Wilkins 2019-04-26 2019-03-20 /pmc/articles/PMC6493686/ /pubmed/30892142 http://dx.doi.org/10.1161/CIRCRESAHA.118.313788 Text en © 2019 The Authors. Circulation Research is published on behalf of the American Heart Association, Inc., by Wolters Kluwer Health, Inc. This is an open access article under the terms of the Creative Commons Attribution (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution, and reproduction in any medium, provided that the original work is properly cited. |
spellingShingle | Cellular Biology Kalna, Viktoria Yang, Youwen Peghaire, Claire R. Frudd, Karen Hannah, Rebecca Shah, Aarti V. Osuna Almagro, Lourdes Boyle, Joseph J. Göttgens, Berthold Ferrer, Jorge Randi, Anna M. Birdsey, Graeme M. The Transcription Factor ERG Regulates Super-Enhancers Associated With an Endothelial-Specific Gene Expression Program |
title | The Transcription Factor ERG Regulates Super-Enhancers Associated With an Endothelial-Specific Gene Expression Program |
title_full | The Transcription Factor ERG Regulates Super-Enhancers Associated With an Endothelial-Specific Gene Expression Program |
title_fullStr | The Transcription Factor ERG Regulates Super-Enhancers Associated With an Endothelial-Specific Gene Expression Program |
title_full_unstemmed | The Transcription Factor ERG Regulates Super-Enhancers Associated With an Endothelial-Specific Gene Expression Program |
title_short | The Transcription Factor ERG Regulates Super-Enhancers Associated With an Endothelial-Specific Gene Expression Program |
title_sort | transcription factor erg regulates super-enhancers associated with an endothelial-specific gene expression program |
topic | Cellular Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6493686/ https://www.ncbi.nlm.nih.gov/pubmed/30892142 http://dx.doi.org/10.1161/CIRCRESAHA.118.313788 |
work_keys_str_mv | AT kalnaviktoria thetranscriptionfactorergregulatessuperenhancersassociatedwithanendothelialspecificgeneexpressionprogram AT yangyouwen thetranscriptionfactorergregulatessuperenhancersassociatedwithanendothelialspecificgeneexpressionprogram AT peghaireclairer thetranscriptionfactorergregulatessuperenhancersassociatedwithanendothelialspecificgeneexpressionprogram AT fruddkaren thetranscriptionfactorergregulatessuperenhancersassociatedwithanendothelialspecificgeneexpressionprogram AT hannahrebecca thetranscriptionfactorergregulatessuperenhancersassociatedwithanendothelialspecificgeneexpressionprogram AT shahaartiv thetranscriptionfactorergregulatessuperenhancersassociatedwithanendothelialspecificgeneexpressionprogram AT osunaalmagrolourdes thetranscriptionfactorergregulatessuperenhancersassociatedwithanendothelialspecificgeneexpressionprogram AT boylejosephj thetranscriptionfactorergregulatessuperenhancersassociatedwithanendothelialspecificgeneexpressionprogram AT gottgensberthold thetranscriptionfactorergregulatessuperenhancersassociatedwithanendothelialspecificgeneexpressionprogram AT ferrerjorge thetranscriptionfactorergregulatessuperenhancersassociatedwithanendothelialspecificgeneexpressionprogram AT randiannam thetranscriptionfactorergregulatessuperenhancersassociatedwithanendothelialspecificgeneexpressionprogram AT birdseygraemem thetranscriptionfactorergregulatessuperenhancersassociatedwithanendothelialspecificgeneexpressionprogram AT kalnaviktoria transcriptionfactorergregulatessuperenhancersassociatedwithanendothelialspecificgeneexpressionprogram AT yangyouwen transcriptionfactorergregulatessuperenhancersassociatedwithanendothelialspecificgeneexpressionprogram AT peghaireclairer transcriptionfactorergregulatessuperenhancersassociatedwithanendothelialspecificgeneexpressionprogram AT fruddkaren transcriptionfactorergregulatessuperenhancersassociatedwithanendothelialspecificgeneexpressionprogram AT hannahrebecca transcriptionfactorergregulatessuperenhancersassociatedwithanendothelialspecificgeneexpressionprogram AT shahaartiv transcriptionfactorergregulatessuperenhancersassociatedwithanendothelialspecificgeneexpressionprogram AT osunaalmagrolourdes transcriptionfactorergregulatessuperenhancersassociatedwithanendothelialspecificgeneexpressionprogram AT boylejosephj transcriptionfactorergregulatessuperenhancersassociatedwithanendothelialspecificgeneexpressionprogram AT gottgensberthold transcriptionfactorergregulatessuperenhancersassociatedwithanendothelialspecificgeneexpressionprogram AT ferrerjorge transcriptionfactorergregulatessuperenhancersassociatedwithanendothelialspecificgeneexpressionprogram AT randiannam transcriptionfactorergregulatessuperenhancersassociatedwithanendothelialspecificgeneexpressionprogram AT birdseygraemem transcriptionfactorergregulatessuperenhancersassociatedwithanendothelialspecificgeneexpressionprogram |