Cargando…
Supervised Domain Adaptation for Automatic Sub-cortical Brain Structure Segmentation with Minimal User Interaction
In recent years, some convolutional neural networks (CNNs) have been proposed to segment sub-cortical brain structures from magnetic resonance images (MRIs). Although these methods provide accurate segmentation, there is a reproducibility issue regarding segmenting MRI volumes from different image d...
Autores principales: | Kushibar, Kaisar, Valverde, Sergi, González-Villà, Sandra, Bernal, Jose, Cabezas, Mariano, Oliver, Arnau, Lladó, Xavier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6494835/ https://www.ncbi.nlm.nih.gov/pubmed/31043688 http://dx.doi.org/10.1038/s41598-019-43299-z |
Ejemplares similares
-
Transductive Transfer Learning for Domain Adaptation in Brain Magnetic Resonance Image Segmentation
por: Kushibar, Kaisar, et al.
Publicado: (2021) -
Improving the detection of autism spectrum disorder by combining structural and functional MRI information
por: Rakić, Mladen, et al.
Publicado: (2020) -
Evaluating the effect of multiple sclerosis lesions on automatic brain structure segmentation
por: González-Villà, Sandra, et al.
Publicado: (2017) -
A supervised framework with intensity subtraction and deformation field features for the detection of new T2-w lesions in multiple sclerosis
por: Salem, Mostafa, et al.
Publicado: (2017) -
One-shot domain adaptation in multiple sclerosis lesion segmentation using convolutional neural networks
por: Valverde, Sergi, et al.
Publicado: (2018)