Cargando…
Electrocardiogram generation with a bidirectional LSTM-CNN generative adversarial network
Heart disease is a malignant threat to human health. Electrocardiogram (ECG) tests are used to help diagnose heart disease by recording the heart’s activity. However, automated medical-aided diagnosis with computers usually requires a large volume of labeled clinical data without patients' priv...
Autores principales: | Zhu, Fei, Ye, Fei, Fu, Yuchen, Liu, Quan, Shen, Bairong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6494992/ https://www.ncbi.nlm.nih.gov/pubmed/31043666 http://dx.doi.org/10.1038/s41598-019-42516-z |
Ejemplares similares
-
Deep Convolutional Generative Adversarial Network with LSTM for ECG Denoising
por: Wang, Huidong, et al.
Publicado: (2023) -
Classification of Mental Stress Using CNN-LSTM Algorithms with Electrocardiogram Signals
por: Kang, Mingu, et al.
Publicado: (2021) -
CNN-LSTM-Based Prognostics of Bidirectional Converters for Electric Vehicles’ Machine
por: Rojas-Dueñas, Gabriel, et al.
Publicado: (2021) -
Attention based automated radiology report generation using CNN and LSTM
por: Sirshar, Mehreen, et al.
Publicado: (2022) -
Generative adversarial network based data augmentation for CNN based detection of Covid-19
por: Gulakala, Rutwik, et al.
Publicado: (2022)