Cargando…

Laryngotracheal Microbiota in Adult Laryngotracheal Stenosis

Laryngotracheal stenosis is an obstructive respiratory disease that leads to voicing difficulties and dyspnea with potential life-threatening consequences. The majority of incidences are due to iatrogenic etiology from endotracheal tube intubation; however, airway scarring also has idiopathic causes...

Descripción completa

Detalles Bibliográficos
Autores principales: Hillel, Alexander T., Tang, Sharon S., Carlos, Camila, Skarlupka, Joseph H., Gowda, Madhu, Yin, Linda X., Motz, Kevin, Currie, Cameron R., Suen, Garret, Thibeault, Susan L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6495342/
https://www.ncbi.nlm.nih.gov/pubmed/31043518
http://dx.doi.org/10.1128/mSphereDirect.00211-19
_version_ 1783415346793807872
author Hillel, Alexander T.
Tang, Sharon S.
Carlos, Camila
Skarlupka, Joseph H.
Gowda, Madhu
Yin, Linda X.
Motz, Kevin
Currie, Cameron R.
Suen, Garret
Thibeault, Susan L.
author_facet Hillel, Alexander T.
Tang, Sharon S.
Carlos, Camila
Skarlupka, Joseph H.
Gowda, Madhu
Yin, Linda X.
Motz, Kevin
Currie, Cameron R.
Suen, Garret
Thibeault, Susan L.
author_sort Hillel, Alexander T.
collection PubMed
description Laryngotracheal stenosis is an obstructive respiratory disease that leads to voicing difficulties and dyspnea with potential life-threatening consequences. The majority of incidences are due to iatrogenic etiology from endotracheal tube intubation; however, airway scarring also has idiopathic causes. While recent evidence suggests a microbial contribution to mucosal inflammation, the microbiota associated with different types of stenosis has not been characterized. High-throughput sequencing of the V4 region of the16S rRNA gene was performed to characterize the microbial communities of 61 swab samples from 17 iatrogenic and 10 adult idiopathic stenosis patients. Nonscar swabs from stenosis patients were internal controls, and eight swabs from four patients without stenosis represented external controls. Significant differences in diversity were observed between scar and nonscar samples and among sample sites, with decreased diversity detected in scar samples and the glottis region. Permutational analysis of variance (PERMANOVA) results revealed significant differences in community composition for scar versus nonscar samples, etiology type, sample site, groups (iatrogenic, idiopathic, and internal and external controls), and individual patients. Pairwise Spearman’s correlation revealed a strong inverse correlation between Prevotella and Streptococcus among all samples. Finally, bacteria in the family Moraxellaceae were found to be distinctly associated with idiopathic stenosis samples in comparison with external controls. Our findings suggest that specific microbiota and community shifts are present with laryngotracheal stenosis in adults, with members of the family Moraxellaceae, including the known pathogens Moraxella and Acinetobacter, identified in idiopathic scar. Further work is warranted to elucidate the contributing role of bacteria on the pathogenesis of laryngotracheal stenosis. IMPORTANCE The laryngotracheal region resides at the intersection between the heavily studied nasal cavity and lungs; however, examination of the microbiome in chronic inflammatory conditions of the subglottis and trachea remains scarce. To date, studies have focused on the microbiota of the vocal folds, or the glottis, for laryngeal carcinoma, as well as healthy larynges, benign vocal fold lesions, and larynges exposed to smoking and refluxate. In this study, we seek to examine the structure and composition of the microbial community in adult laryngotracheal stenosis of various etiologies. Due to the heterogeneity among the underlying pathogenesis mechanisms and clinical outcomes seen in laryngotracheal stenosis disease, we hypothesized that different microbial profiles will be detected among various stenosis etiology types. Understanding differences in the microbiota for subglottic stenosis subtypes may shed light upon etiology-specific biomarker identification and offer novel insights into management approaches for this debilitating disease.
format Online
Article
Text
id pubmed-6495342
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-64953422019-05-03 Laryngotracheal Microbiota in Adult Laryngotracheal Stenosis Hillel, Alexander T. Tang, Sharon S. Carlos, Camila Skarlupka, Joseph H. Gowda, Madhu Yin, Linda X. Motz, Kevin Currie, Cameron R. Suen, Garret Thibeault, Susan L. mSphere Research Article Laryngotracheal stenosis is an obstructive respiratory disease that leads to voicing difficulties and dyspnea with potential life-threatening consequences. The majority of incidences are due to iatrogenic etiology from endotracheal tube intubation; however, airway scarring also has idiopathic causes. While recent evidence suggests a microbial contribution to mucosal inflammation, the microbiota associated with different types of stenosis has not been characterized. High-throughput sequencing of the V4 region of the16S rRNA gene was performed to characterize the microbial communities of 61 swab samples from 17 iatrogenic and 10 adult idiopathic stenosis patients. Nonscar swabs from stenosis patients were internal controls, and eight swabs from four patients without stenosis represented external controls. Significant differences in diversity were observed between scar and nonscar samples and among sample sites, with decreased diversity detected in scar samples and the glottis region. Permutational analysis of variance (PERMANOVA) results revealed significant differences in community composition for scar versus nonscar samples, etiology type, sample site, groups (iatrogenic, idiopathic, and internal and external controls), and individual patients. Pairwise Spearman’s correlation revealed a strong inverse correlation between Prevotella and Streptococcus among all samples. Finally, bacteria in the family Moraxellaceae were found to be distinctly associated with idiopathic stenosis samples in comparison with external controls. Our findings suggest that specific microbiota and community shifts are present with laryngotracheal stenosis in adults, with members of the family Moraxellaceae, including the known pathogens Moraxella and Acinetobacter, identified in idiopathic scar. Further work is warranted to elucidate the contributing role of bacteria on the pathogenesis of laryngotracheal stenosis. IMPORTANCE The laryngotracheal region resides at the intersection between the heavily studied nasal cavity and lungs; however, examination of the microbiome in chronic inflammatory conditions of the subglottis and trachea remains scarce. To date, studies have focused on the microbiota of the vocal folds, or the glottis, for laryngeal carcinoma, as well as healthy larynges, benign vocal fold lesions, and larynges exposed to smoking and refluxate. In this study, we seek to examine the structure and composition of the microbial community in adult laryngotracheal stenosis of various etiologies. Due to the heterogeneity among the underlying pathogenesis mechanisms and clinical outcomes seen in laryngotracheal stenosis disease, we hypothesized that different microbial profiles will be detected among various stenosis etiology types. Understanding differences in the microbiota for subglottic stenosis subtypes may shed light upon etiology-specific biomarker identification and offer novel insights into management approaches for this debilitating disease. American Society for Microbiology 2019-05-01 /pmc/articles/PMC6495342/ /pubmed/31043518 http://dx.doi.org/10.1128/mSphereDirect.00211-19 Text en Copyright © 2019 Hillel et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Hillel, Alexander T.
Tang, Sharon S.
Carlos, Camila
Skarlupka, Joseph H.
Gowda, Madhu
Yin, Linda X.
Motz, Kevin
Currie, Cameron R.
Suen, Garret
Thibeault, Susan L.
Laryngotracheal Microbiota in Adult Laryngotracheal Stenosis
title Laryngotracheal Microbiota in Adult Laryngotracheal Stenosis
title_full Laryngotracheal Microbiota in Adult Laryngotracheal Stenosis
title_fullStr Laryngotracheal Microbiota in Adult Laryngotracheal Stenosis
title_full_unstemmed Laryngotracheal Microbiota in Adult Laryngotracheal Stenosis
title_short Laryngotracheal Microbiota in Adult Laryngotracheal Stenosis
title_sort laryngotracheal microbiota in adult laryngotracheal stenosis
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6495342/
https://www.ncbi.nlm.nih.gov/pubmed/31043518
http://dx.doi.org/10.1128/mSphereDirect.00211-19
work_keys_str_mv AT hillelalexandert laryngotrachealmicrobiotainadultlaryngotrachealstenosis
AT tangsharons laryngotrachealmicrobiotainadultlaryngotrachealstenosis
AT carloscamila laryngotrachealmicrobiotainadultlaryngotrachealstenosis
AT skarlupkajosephh laryngotrachealmicrobiotainadultlaryngotrachealstenosis
AT gowdamadhu laryngotrachealmicrobiotainadultlaryngotrachealstenosis
AT yinlindax laryngotrachealmicrobiotainadultlaryngotrachealstenosis
AT motzkevin laryngotrachealmicrobiotainadultlaryngotrachealstenosis
AT curriecameronr laryngotrachealmicrobiotainadultlaryngotrachealstenosis
AT suengarret laryngotrachealmicrobiotainadultlaryngotrachealstenosis
AT thibeaultsusanl laryngotrachealmicrobiotainadultlaryngotrachealstenosis