Cargando…
Pentanuclear iron catalysts for water oxidation: substituents provide two routes to control onset potentials
The development of robust and efficient molecular catalysts based on earth-abundant transition metals for water oxidation reactions is a challenging research target. Our group recently demonstrated the high activity and stability of a pentairon-based water oxidation electrocatalyst (M. Okamura, M. K...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6495723/ https://www.ncbi.nlm.nih.gov/pubmed/31123573 http://dx.doi.org/10.1039/c9sc00678h |
_version_ | 1783415378739724288 |
---|---|
author | Praneeth, Vijayendran K. K. Kondo, Mio Okamura, Masaya Akai, Takuya Izu, Hitoshi Masaoka, Shigeyuki |
author_facet | Praneeth, Vijayendran K. K. Kondo, Mio Okamura, Masaya Akai, Takuya Izu, Hitoshi Masaoka, Shigeyuki |
author_sort | Praneeth, Vijayendran K. K. |
collection | PubMed |
description | The development of robust and efficient molecular catalysts based on earth-abundant transition metals for water oxidation reactions is a challenging research target. Our group recently demonstrated the high activity and stability of a pentairon-based water oxidation electrocatalyst (M. Okamura, M. Kondo, R. Kuga, Y. Kurashige, T. Yanai, S. Hayami, V. K. K. Praneeth, M. Yoshida, K. Yoneda, S. Kawata and S. Masaoka, Nature, 2016, 530, 465–468). However, the development of strategies to decrease onset potentials for catalysis remains challenging. In this article, we report the construction of a series of pentanuclear iron complexes by introducing electron-donating (methyl) and electron-withdrawing (bromo) substituents on the ligand. Two newly synthesized complexes exhibited five reversible redox processes, similar to what is seen with the parent complex. These complexes can also serve as homogeneous catalysts for water oxidation reactions, and the faradaic efficiencies of the reactions were high. Additionally, the onset potentials of the newly developed complexes were lower than that of the parent complex. Mechanistic insights revealed that there are two methods for decreasing onset potentials: control of the redox potentials of the pentairon complex and control of the reaction mechanism. |
format | Online Article Text |
id | pubmed-6495723 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-64957232019-05-23 Pentanuclear iron catalysts for water oxidation: substituents provide two routes to control onset potentials Praneeth, Vijayendran K. K. Kondo, Mio Okamura, Masaya Akai, Takuya Izu, Hitoshi Masaoka, Shigeyuki Chem Sci Chemistry The development of robust and efficient molecular catalysts based on earth-abundant transition metals for water oxidation reactions is a challenging research target. Our group recently demonstrated the high activity and stability of a pentairon-based water oxidation electrocatalyst (M. Okamura, M. Kondo, R. Kuga, Y. Kurashige, T. Yanai, S. Hayami, V. K. K. Praneeth, M. Yoshida, K. Yoneda, S. Kawata and S. Masaoka, Nature, 2016, 530, 465–468). However, the development of strategies to decrease onset potentials for catalysis remains challenging. In this article, we report the construction of a series of pentanuclear iron complexes by introducing electron-donating (methyl) and electron-withdrawing (bromo) substituents on the ligand. Two newly synthesized complexes exhibited five reversible redox processes, similar to what is seen with the parent complex. These complexes can also serve as homogeneous catalysts for water oxidation reactions, and the faradaic efficiencies of the reactions were high. Additionally, the onset potentials of the newly developed complexes were lower than that of the parent complex. Mechanistic insights revealed that there are two methods for decreasing onset potentials: control of the redox potentials of the pentairon complex and control of the reaction mechanism. Royal Society of Chemistry 2019-03-19 /pmc/articles/PMC6495723/ /pubmed/31123573 http://dx.doi.org/10.1039/c9sc00678h Text en This journal is © The Royal Society of Chemistry 2019 http://creativecommons.org/licenses/by/3.0/ This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0) |
spellingShingle | Chemistry Praneeth, Vijayendran K. K. Kondo, Mio Okamura, Masaya Akai, Takuya Izu, Hitoshi Masaoka, Shigeyuki Pentanuclear iron catalysts for water oxidation: substituents provide two routes to control onset potentials |
title | Pentanuclear iron catalysts for water oxidation: substituents provide two routes to control onset potentials
|
title_full | Pentanuclear iron catalysts for water oxidation: substituents provide two routes to control onset potentials
|
title_fullStr | Pentanuclear iron catalysts for water oxidation: substituents provide two routes to control onset potentials
|
title_full_unstemmed | Pentanuclear iron catalysts for water oxidation: substituents provide two routes to control onset potentials
|
title_short | Pentanuclear iron catalysts for water oxidation: substituents provide two routes to control onset potentials
|
title_sort | pentanuclear iron catalysts for water oxidation: substituents provide two routes to control onset potentials |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6495723/ https://www.ncbi.nlm.nih.gov/pubmed/31123573 http://dx.doi.org/10.1039/c9sc00678h |
work_keys_str_mv | AT praneethvijayendrankk pentanuclearironcatalystsforwateroxidationsubstituentsprovidetworoutestocontrolonsetpotentials AT kondomio pentanuclearironcatalystsforwateroxidationsubstituentsprovidetworoutestocontrolonsetpotentials AT okamuramasaya pentanuclearironcatalystsforwateroxidationsubstituentsprovidetworoutestocontrolonsetpotentials AT akaitakuya pentanuclearironcatalystsforwateroxidationsubstituentsprovidetworoutestocontrolonsetpotentials AT izuhitoshi pentanuclearironcatalystsforwateroxidationsubstituentsprovidetworoutestocontrolonsetpotentials AT masaokashigeyuki pentanuclearironcatalystsforwateroxidationsubstituentsprovidetworoutestocontrolonsetpotentials |