Cargando…
Isolation of nanobodies against Xenopus embryonic antigens using immune and non-immune phage display libraries
The use of Xenopus laevis as a model for vertebrate developmental biology is limited by a lack of antibodies specific for embryonic antigens. This study evaluated the use of immune and non-immune phage display libraries for the isolation of single domain antibodies, or nanobodies, with specificities...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6497274/ https://www.ncbi.nlm.nih.gov/pubmed/31048885 http://dx.doi.org/10.1371/journal.pone.0216083 |
_version_ | 1783415440958029824 |
---|---|
author | Itoh, Keiji Reis, Alice H. Hayhurst, Andrew Sokol, Sergei Y. |
author_facet | Itoh, Keiji Reis, Alice H. Hayhurst, Andrew Sokol, Sergei Y. |
author_sort | Itoh, Keiji |
collection | PubMed |
description | The use of Xenopus laevis as a model for vertebrate developmental biology is limited by a lack of antibodies specific for embryonic antigens. This study evaluated the use of immune and non-immune phage display libraries for the isolation of single domain antibodies, or nanobodies, with specificities for Xenopus embryonic antigens. The immune nanobody library was derived from peripheral blood lymphocyte RNA obtained from a llama immunized with Xenopus gastrula homogenates. Screening this library by immunostaining of embryonic tissues with pooled periplasmic material and sib-selection led to the isolation of several monoclonal phages reactive with the cytoplasm and nuclei of gastrula cells. One antigen recognized by a group of nanobodies was identified using a reverse proteomics approach as nucleoplasmin, an abundant histone chaperone. As an alternative strategy, a semi-synthetic non-immune llama nanobody phage display library was panned on highly purified Xenopus proteins. This proof-of-principle approach isolated monoclonal nanobodies that specifically bind Nuclear distribution element-like 1 (Ndel1) in multiple immunoassays. Our results suggest that immune and non-immune phage display screens on crude and purified embryonic antigens can efficiently identify nanobodies useful to the Xenopus developmental biology community. |
format | Online Article Text |
id | pubmed-6497274 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-64972742019-05-17 Isolation of nanobodies against Xenopus embryonic antigens using immune and non-immune phage display libraries Itoh, Keiji Reis, Alice H. Hayhurst, Andrew Sokol, Sergei Y. PLoS One Research Article The use of Xenopus laevis as a model for vertebrate developmental biology is limited by a lack of antibodies specific for embryonic antigens. This study evaluated the use of immune and non-immune phage display libraries for the isolation of single domain antibodies, or nanobodies, with specificities for Xenopus embryonic antigens. The immune nanobody library was derived from peripheral blood lymphocyte RNA obtained from a llama immunized with Xenopus gastrula homogenates. Screening this library by immunostaining of embryonic tissues with pooled periplasmic material and sib-selection led to the isolation of several monoclonal phages reactive with the cytoplasm and nuclei of gastrula cells. One antigen recognized by a group of nanobodies was identified using a reverse proteomics approach as nucleoplasmin, an abundant histone chaperone. As an alternative strategy, a semi-synthetic non-immune llama nanobody phage display library was panned on highly purified Xenopus proteins. This proof-of-principle approach isolated monoclonal nanobodies that specifically bind Nuclear distribution element-like 1 (Ndel1) in multiple immunoassays. Our results suggest that immune and non-immune phage display screens on crude and purified embryonic antigens can efficiently identify nanobodies useful to the Xenopus developmental biology community. Public Library of Science 2019-05-02 /pmc/articles/PMC6497274/ /pubmed/31048885 http://dx.doi.org/10.1371/journal.pone.0216083 Text en © 2019 Itoh et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Itoh, Keiji Reis, Alice H. Hayhurst, Andrew Sokol, Sergei Y. Isolation of nanobodies against Xenopus embryonic antigens using immune and non-immune phage display libraries |
title | Isolation of nanobodies against Xenopus embryonic antigens using immune and non-immune phage display libraries |
title_full | Isolation of nanobodies against Xenopus embryonic antigens using immune and non-immune phage display libraries |
title_fullStr | Isolation of nanobodies against Xenopus embryonic antigens using immune and non-immune phage display libraries |
title_full_unstemmed | Isolation of nanobodies against Xenopus embryonic antigens using immune and non-immune phage display libraries |
title_short | Isolation of nanobodies against Xenopus embryonic antigens using immune and non-immune phage display libraries |
title_sort | isolation of nanobodies against xenopus embryonic antigens using immune and non-immune phage display libraries |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6497274/ https://www.ncbi.nlm.nih.gov/pubmed/31048885 http://dx.doi.org/10.1371/journal.pone.0216083 |
work_keys_str_mv | AT itohkeiji isolationofnanobodiesagainstxenopusembryonicantigensusingimmuneandnonimmunephagedisplaylibraries AT reisaliceh isolationofnanobodiesagainstxenopusembryonicantigensusingimmuneandnonimmunephagedisplaylibraries AT hayhurstandrew isolationofnanobodiesagainstxenopusembryonicantigensusingimmuneandnonimmunephagedisplaylibraries AT sokolsergeiy isolationofnanobodiesagainstxenopusembryonicantigensusingimmuneandnonimmunephagedisplaylibraries |