Cargando…

Non-monotonic auto-regulation in single gene circuits

We theoretically study the effects of non-monotonic response curves in genetic auto-regulation by exploring the possible dynamical behaviors for such systems. Our motivation is twofold: we aim at conceiving the simplest genetic circuits for synthetic biology and at understanding the natural auto-reg...

Descripción completa

Detalles Bibliográficos
Autores principales: Descheemaeker, Lana, Peeters, Eveline, de Buyl, Sophie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6497280/
https://www.ncbi.nlm.nih.gov/pubmed/31048872
http://dx.doi.org/10.1371/journal.pone.0216089
Descripción
Sumario:We theoretically study the effects of non-monotonic response curves in genetic auto-regulation by exploring the possible dynamical behaviors for such systems. Our motivation is twofold: we aim at conceiving the simplest genetic circuits for synthetic biology and at understanding the natural auto-regulation of the LrpB protein of the Sulfolobus solfataricus archaeon which exhibits non-monotonicity. We analyzed three toy models, based on mass-action kinetics, with increasing complexity and sought for oscillations and (fast) bistable switching. We performed large parameter scans and sensitivity analyses, and quantified the quality of the oscillators and switches by computing relative volumes in parameter space reproducing the sought dynamical behavior. All single gene systems need finely tuned parameters in order to oscillate, but bistable switches are more robust against parameter changes. We expected non-monotonic switches to be faster than monotonic ones, however solutions combining both auto-activation and repression in the physiological range to obtain fast switches are scarce. Our analysis shows that the Ss-LrpB system can not provide a bistable switch and that robust oscillations are unlikely. Gillespie simulations suggest that the function of the natural Ss-LrpB system is sensing via a spiking behavior, which is in line with the fact that this protein has a metabolic regulatory function and binds to a ligand.