Cargando…

Differential actinodin1 regulation in embryonic development and adult fin regeneration in Danio rerio

Actinotrichia are the first exoskeletal elements formed during zebrafish fin development. These rigid fibrils serve as skeletal support for the fin fold and as substrates for mesenchymal cell migration. In the adult intact fins, actinotrichia are restricted to the distal domain of the fin. Following...

Descripción completa

Detalles Bibliográficos
Autores principales: Phan, Hue-Eileen, Northorp, Marissa, Lalonde, Robert L., Ngo, Dung, Akimenko, Marie-Andrée
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6497306/
https://www.ncbi.nlm.nih.gov/pubmed/31048899
http://dx.doi.org/10.1371/journal.pone.0216370
_version_ 1783415448466882560
author Phan, Hue-Eileen
Northorp, Marissa
Lalonde, Robert L.
Ngo, Dung
Akimenko, Marie-Andrée
author_facet Phan, Hue-Eileen
Northorp, Marissa
Lalonde, Robert L.
Ngo, Dung
Akimenko, Marie-Andrée
author_sort Phan, Hue-Eileen
collection PubMed
description Actinotrichia are the first exoskeletal elements formed during zebrafish fin development. These rigid fibrils serve as skeletal support for the fin fold and as substrates for mesenchymal cell migration. In the adult intact fins, actinotrichia are restricted to the distal domain of the fin. Following fin amputation, actinotrichia also reform during regeneration. The actinodin gene family codes for structural proteins of actinotrichia. We have previously identified cis-acting regulatory elements in a 2kb genomic region upstream of the first exon of actinodin1, termed 2P, required for tissue-specific expression in the fin fold ectoderm and mesenchyme during embryonic development. Indeed, 2P contains an ectodermal enhancer in a 150bp region named epi. Deletion of epi from 2P results in loss of ectodermal-specific activity. In the present study, we sought to further characterize the activity of these regulatory sequences throughout fin development and during adult fin regeneration. Using a reporter transgenic approach, we show that a site within the epi region, termed epi3, contains an early mesenchymal-specific repressor. We also show that the larval fin fold ectodermal enhancer within epi3 remains functional in the basal epithelial layer during fin regeneration. We show that the first non-coding exon and first intron of actinodin1 contains a transcriptional enhancer and an alternative promoter that are necessary for the persistence of reporter expression reminiscent of actinodin1 expression during adulthood. Altogether, we have identified cis-acting regulatory elements that are required for tissue-specific expression as well as full recapitulation of actinodin1 expression during adulthood. Furthermore, the characterization of these elements provides us with useful molecular tools for the enhancement of transgene expression in adulthood.
format Online
Article
Text
id pubmed-6497306
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-64973062019-05-17 Differential actinodin1 regulation in embryonic development and adult fin regeneration in Danio rerio Phan, Hue-Eileen Northorp, Marissa Lalonde, Robert L. Ngo, Dung Akimenko, Marie-Andrée PLoS One Research Article Actinotrichia are the first exoskeletal elements formed during zebrafish fin development. These rigid fibrils serve as skeletal support for the fin fold and as substrates for mesenchymal cell migration. In the adult intact fins, actinotrichia are restricted to the distal domain of the fin. Following fin amputation, actinotrichia also reform during regeneration. The actinodin gene family codes for structural proteins of actinotrichia. We have previously identified cis-acting regulatory elements in a 2kb genomic region upstream of the first exon of actinodin1, termed 2P, required for tissue-specific expression in the fin fold ectoderm and mesenchyme during embryonic development. Indeed, 2P contains an ectodermal enhancer in a 150bp region named epi. Deletion of epi from 2P results in loss of ectodermal-specific activity. In the present study, we sought to further characterize the activity of these regulatory sequences throughout fin development and during adult fin regeneration. Using a reporter transgenic approach, we show that a site within the epi region, termed epi3, contains an early mesenchymal-specific repressor. We also show that the larval fin fold ectodermal enhancer within epi3 remains functional in the basal epithelial layer during fin regeneration. We show that the first non-coding exon and first intron of actinodin1 contains a transcriptional enhancer and an alternative promoter that are necessary for the persistence of reporter expression reminiscent of actinodin1 expression during adulthood. Altogether, we have identified cis-acting regulatory elements that are required for tissue-specific expression as well as full recapitulation of actinodin1 expression during adulthood. Furthermore, the characterization of these elements provides us with useful molecular tools for the enhancement of transgene expression in adulthood. Public Library of Science 2019-05-02 /pmc/articles/PMC6497306/ /pubmed/31048899 http://dx.doi.org/10.1371/journal.pone.0216370 Text en © 2019 Phan et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Phan, Hue-Eileen
Northorp, Marissa
Lalonde, Robert L.
Ngo, Dung
Akimenko, Marie-Andrée
Differential actinodin1 regulation in embryonic development and adult fin regeneration in Danio rerio
title Differential actinodin1 regulation in embryonic development and adult fin regeneration in Danio rerio
title_full Differential actinodin1 regulation in embryonic development and adult fin regeneration in Danio rerio
title_fullStr Differential actinodin1 regulation in embryonic development and adult fin regeneration in Danio rerio
title_full_unstemmed Differential actinodin1 regulation in embryonic development and adult fin regeneration in Danio rerio
title_short Differential actinodin1 regulation in embryonic development and adult fin regeneration in Danio rerio
title_sort differential actinodin1 regulation in embryonic development and adult fin regeneration in danio rerio
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6497306/
https://www.ncbi.nlm.nih.gov/pubmed/31048899
http://dx.doi.org/10.1371/journal.pone.0216370
work_keys_str_mv AT phanhueeileen differentialactinodin1regulationinembryonicdevelopmentandadultfinregenerationindaniorerio
AT northorpmarissa differentialactinodin1regulationinembryonicdevelopmentandadultfinregenerationindaniorerio
AT lalonderobertl differentialactinodin1regulationinembryonicdevelopmentandadultfinregenerationindaniorerio
AT ngodung differentialactinodin1regulationinembryonicdevelopmentandadultfinregenerationindaniorerio
AT akimenkomarieandree differentialactinodin1regulationinembryonicdevelopmentandadultfinregenerationindaniorerio