Cargando…

Effects of a novel peptide Ac-SDKP in radiation-induced coronary endothelial damage and resting myocardial blood flow

BACKGROUND: Cancer survivors treated with thoracic ionizing radiation are at higher risk of premature death due to myocardial ischemia. No therapy is currently available to prevent or mitigate these effects. We tested the hypothesis that an endogenous tetrapeptide N-acetyl-Ser-Asp-Lys-Pro (Ac-SDKP)...

Descripción completa

Detalles Bibliográficos
Autores principales: Sharma, Umesh C., Sonkawade, Swati D., Baird, Andrew, Chen, Min, Xu, Shirley, Sexton, Sandra, Singh, Anurag K., Groman, Adrienne, Turowski, Steven G., Spernyak, Joseph A., Mahajan, Supriya D., Pokharel, Saraswati
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6497419/
https://www.ncbi.nlm.nih.gov/pubmed/31057947
http://dx.doi.org/10.1186/s40959-018-0034-1
_version_ 1783415468294406144
author Sharma, Umesh C.
Sonkawade, Swati D.
Baird, Andrew
Chen, Min
Xu, Shirley
Sexton, Sandra
Singh, Anurag K.
Groman, Adrienne
Turowski, Steven G.
Spernyak, Joseph A.
Mahajan, Supriya D.
Pokharel, Saraswati
author_facet Sharma, Umesh C.
Sonkawade, Swati D.
Baird, Andrew
Chen, Min
Xu, Shirley
Sexton, Sandra
Singh, Anurag K.
Groman, Adrienne
Turowski, Steven G.
Spernyak, Joseph A.
Mahajan, Supriya D.
Pokharel, Saraswati
author_sort Sharma, Umesh C.
collection PubMed
description BACKGROUND: Cancer survivors treated with thoracic ionizing radiation are at higher risk of premature death due to myocardial ischemia. No therapy is currently available to prevent or mitigate these effects. We tested the hypothesis that an endogenous tetrapeptide N-acetyl-Ser-Asp-Lys-Pro (Ac-SDKP) counteracts radiation-induced coronary vascular fibrosis and endothelial cell loss and preserves myocardial blood flow. METHODS: We examined a rat model with external-beam-radiation exposure to the cardiac silhouette. We treated a subgroup of irradiated rats with subcutaneous Ac-SDKP for 18-weeks. We performed cardiac MRI with Gadolinium contrast to examine resting myocardial blood flow content. Upon sacrifice, we examined coronary endothelial-cell-density, fibrosis, apoptosis and endothelial tight-junction proteins (TJP). In vitro, we examined Ac-SDKP uptake by the endothelial cells and tested its effects on radiation-induced reactive oxygen species (ROS) generation. In vivo, we injected labeled Ac-SDKP intravenously and examined its endothelial localization after 4-h. RESULTS: We found that radiation exposure led to reduced resting myocardial blood flow content. There was concomitant endothelial cell loss and coronary fibrosis. Smaller vessels and capillaries showed more severe changes than larger vessels. Real-time PCR and confocal microscopy showed radiation-induced loss of TJ proteins including- claudin-1 and junctional adhesion molecule-2 (JAM-2). Ac-SDKP normalized myocardial blood flow content, inhibited endothelial cell loss, reduced coronary fibrosis and restored TJ-assembly. In vitro, Ac-SDKP localized to endothelial cells and inhibited radiation-induced endothelial ROS generation. In vivo, labeled Ac-SDKP was visualized into the endothelium 4-h after the intravenous injection. CONCLUSIONS: We concluded that Ac-SDKP has protective effects against radiation-induced reduction of myocardial blood flow. Such protective effects are likely mediated by neutralization of ROS-mediated injury, preservation of endothelial integrity and inhibition of fibrosis. This demonstrates a strong therapeutic potential of Ac-SDKP to counteract radiotherapy-induced coronary disease. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s40959-018-0034-1) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-6497419
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-64974192019-05-02 Effects of a novel peptide Ac-SDKP in radiation-induced coronary endothelial damage and resting myocardial blood flow Sharma, Umesh C. Sonkawade, Swati D. Baird, Andrew Chen, Min Xu, Shirley Sexton, Sandra Singh, Anurag K. Groman, Adrienne Turowski, Steven G. Spernyak, Joseph A. Mahajan, Supriya D. Pokharel, Saraswati Cardiooncology Research BACKGROUND: Cancer survivors treated with thoracic ionizing radiation are at higher risk of premature death due to myocardial ischemia. No therapy is currently available to prevent or mitigate these effects. We tested the hypothesis that an endogenous tetrapeptide N-acetyl-Ser-Asp-Lys-Pro (Ac-SDKP) counteracts radiation-induced coronary vascular fibrosis and endothelial cell loss and preserves myocardial blood flow. METHODS: We examined a rat model with external-beam-radiation exposure to the cardiac silhouette. We treated a subgroup of irradiated rats with subcutaneous Ac-SDKP for 18-weeks. We performed cardiac MRI with Gadolinium contrast to examine resting myocardial blood flow content. Upon sacrifice, we examined coronary endothelial-cell-density, fibrosis, apoptosis and endothelial tight-junction proteins (TJP). In vitro, we examined Ac-SDKP uptake by the endothelial cells and tested its effects on radiation-induced reactive oxygen species (ROS) generation. In vivo, we injected labeled Ac-SDKP intravenously and examined its endothelial localization after 4-h. RESULTS: We found that radiation exposure led to reduced resting myocardial blood flow content. There was concomitant endothelial cell loss and coronary fibrosis. Smaller vessels and capillaries showed more severe changes than larger vessels. Real-time PCR and confocal microscopy showed radiation-induced loss of TJ proteins including- claudin-1 and junctional adhesion molecule-2 (JAM-2). Ac-SDKP normalized myocardial blood flow content, inhibited endothelial cell loss, reduced coronary fibrosis and restored TJ-assembly. In vitro, Ac-SDKP localized to endothelial cells and inhibited radiation-induced endothelial ROS generation. In vivo, labeled Ac-SDKP was visualized into the endothelium 4-h after the intravenous injection. CONCLUSIONS: We concluded that Ac-SDKP has protective effects against radiation-induced reduction of myocardial blood flow. Such protective effects are likely mediated by neutralization of ROS-mediated injury, preservation of endothelial integrity and inhibition of fibrosis. This demonstrates a strong therapeutic potential of Ac-SDKP to counteract radiotherapy-induced coronary disease. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s40959-018-0034-1) contains supplementary material, which is available to authorized users. BioMed Central 2018-12-18 /pmc/articles/PMC6497419/ /pubmed/31057947 http://dx.doi.org/10.1186/s40959-018-0034-1 Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Sharma, Umesh C.
Sonkawade, Swati D.
Baird, Andrew
Chen, Min
Xu, Shirley
Sexton, Sandra
Singh, Anurag K.
Groman, Adrienne
Turowski, Steven G.
Spernyak, Joseph A.
Mahajan, Supriya D.
Pokharel, Saraswati
Effects of a novel peptide Ac-SDKP in radiation-induced coronary endothelial damage and resting myocardial blood flow
title Effects of a novel peptide Ac-SDKP in radiation-induced coronary endothelial damage and resting myocardial blood flow
title_full Effects of a novel peptide Ac-SDKP in radiation-induced coronary endothelial damage and resting myocardial blood flow
title_fullStr Effects of a novel peptide Ac-SDKP in radiation-induced coronary endothelial damage and resting myocardial blood flow
title_full_unstemmed Effects of a novel peptide Ac-SDKP in radiation-induced coronary endothelial damage and resting myocardial blood flow
title_short Effects of a novel peptide Ac-SDKP in radiation-induced coronary endothelial damage and resting myocardial blood flow
title_sort effects of a novel peptide ac-sdkp in radiation-induced coronary endothelial damage and resting myocardial blood flow
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6497419/
https://www.ncbi.nlm.nih.gov/pubmed/31057947
http://dx.doi.org/10.1186/s40959-018-0034-1
work_keys_str_mv AT sharmaumeshc effectsofanovelpeptideacsdkpinradiationinducedcoronaryendothelialdamageandrestingmyocardialbloodflow
AT sonkawadeswatid effectsofanovelpeptideacsdkpinradiationinducedcoronaryendothelialdamageandrestingmyocardialbloodflow
AT bairdandrew effectsofanovelpeptideacsdkpinradiationinducedcoronaryendothelialdamageandrestingmyocardialbloodflow
AT chenmin effectsofanovelpeptideacsdkpinradiationinducedcoronaryendothelialdamageandrestingmyocardialbloodflow
AT xushirley effectsofanovelpeptideacsdkpinradiationinducedcoronaryendothelialdamageandrestingmyocardialbloodflow
AT sextonsandra effectsofanovelpeptideacsdkpinradiationinducedcoronaryendothelialdamageandrestingmyocardialbloodflow
AT singhanuragk effectsofanovelpeptideacsdkpinradiationinducedcoronaryendothelialdamageandrestingmyocardialbloodflow
AT gromanadrienne effectsofanovelpeptideacsdkpinradiationinducedcoronaryendothelialdamageandrestingmyocardialbloodflow
AT turowskisteveng effectsofanovelpeptideacsdkpinradiationinducedcoronaryendothelialdamageandrestingmyocardialbloodflow
AT spernyakjosepha effectsofanovelpeptideacsdkpinradiationinducedcoronaryendothelialdamageandrestingmyocardialbloodflow
AT mahajansupriyad effectsofanovelpeptideacsdkpinradiationinducedcoronaryendothelialdamageandrestingmyocardialbloodflow
AT pokharelsaraswati effectsofanovelpeptideacsdkpinradiationinducedcoronaryendothelialdamageandrestingmyocardialbloodflow