Cargando…
A Soft-Pruning Method Applied During Training of Spiking Neural Networks for In-memory Computing Applications
Inspired from the computational efficiency of the biological brain, spiking neural networks (SNNs) emulate biological neural networks, neural codes, dynamics, and circuitry. SNNs show great potential for the implementation of unsupervised learning using in-memory computing. Here, we report an algori...
Autores principales: | Shi, Yuhan, Nguyen, Leon, Oh, Sangheon, Liu, Xin, Kuzum, Duygu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6497807/ https://www.ncbi.nlm.nih.gov/pubmed/31080402 http://dx.doi.org/10.3389/fnins.2019.00405 |
Ejemplares similares
-
Neuroinspired unsupervised learning and pruning with subquantum CBRAM arrays
por: Shi, Yuhan, et al.
Publicado: (2018) -
Hippocampal-Cortical Memory Trace Transfer and Reactivation Through Cell-Specific Stimulus and Spontaneous Background Noise
por: Liu, Xin, et al.
Publicado: (2019) -
A Compact Closed-Loop Optogenetics System Based on Artifact-Free Transparent Graphene Electrodes
por: Liu, Xin, et al.
Publicado: (2018) -
Memory-Based Pruning of Deep Neural Networks for IoT Devices Applied to Flood Detection
por: Fernandes Junior, Francisco Erivaldo, et al.
Publicado: (2021) -
Applied neural networks and soft computing
por: Stanimirovic, Ivan
Publicado: (2019)