Cargando…
Deep Learning Spectroscopy: Neural Networks for Molecular Excitation Spectra
Deep learning methods for the prediction of molecular excitation spectra are presented. For the example of the electronic density of states of 132k organic molecules, three different neural network architectures: multilayer perceptron (MLP), convolutional neural network (CNN), and deep tensor neural...
Autores principales: | Ghosh, Kunal, Stuke, Annika, Todorović, Milica, Jørgensen, Peter Bjørn, Schmidt, Mikkel N., Vehtari, Aki, Rinke, Patrick |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6498126/ https://www.ncbi.nlm.nih.gov/pubmed/31065514 http://dx.doi.org/10.1002/advs.201801367 |
Ejemplares similares
-
Machine Learning: Deep Learning Spectroscopy: Neural Networks for Molecular Excitation Spectra (Adv. Sci. 9/2019)
por: Ghosh, Kunal, et al.
Publicado: (2019) -
Detecting stable adsorbates of (1S)-camphor on Cu(111) with Bayesian optimization
por: Järvi, Jari, et al.
Publicado: (2020) -
Atomic structures and orbital energies of 61,489 crystal-forming organic molecules
por: Stuke, Annika, et al.
Publicado: (2020) -
High‐Resolution Electronic Excitation and Emission Spectra of Pentacene and 6,13‐Diazapentacene Monomers and Weakly Bound Dimers by Matrix‐Isolation Spectroscopy
por: Thusek, Jean, et al.
Publicado: (2020) -
Physically inspired deep learning of molecular excitations and photoemission spectra
por: Westermayr, Julia, et al.
Publicado: (2021)