Cargando…
Machine Learning: Deep Learning Spectroscopy: Neural Networks for Molecular Excitation Spectra (Adv. Sci. 9/2019)
With artificial intelligence (AI), we learn the relationship between molecular structure and properties. In article number 1801367, Patrick Rinke and co‐workers build a deep learning AI spectroscopist that can make predictions for molecular spectra instantly and at no further cost for the end user....
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6498127/ http://dx.doi.org/10.1002/advs.201970053 |
_version_ | 1783415585774764032 |
---|---|
author | Ghosh, Kunal Stuke, Annika Todorović, Milica Jørgensen, Peter Bjørn Schmidt, Mikkel N. Vehtari, Aki Rinke, Patrick |
author_facet | Ghosh, Kunal Stuke, Annika Todorović, Milica Jørgensen, Peter Bjørn Schmidt, Mikkel N. Vehtari, Aki Rinke, Patrick |
author_sort | Ghosh, Kunal |
collection | PubMed |
description | With artificial intelligence (AI), we learn the relationship between molecular structure and properties. In article number 1801367, Patrick Rinke and co‐workers build a deep learning AI spectroscopist that can make predictions for molecular spectra instantly and at no further cost for the end user. AI spectroscopy will greatly accelerate the way in which science is done and aid materials discovery and design. [Image: see text] |
format | Online Article Text |
id | pubmed-6498127 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-64981272019-05-07 Machine Learning: Deep Learning Spectroscopy: Neural Networks for Molecular Excitation Spectra (Adv. Sci. 9/2019) Ghosh, Kunal Stuke, Annika Todorović, Milica Jørgensen, Peter Bjørn Schmidt, Mikkel N. Vehtari, Aki Rinke, Patrick Adv Sci (Weinh) Inside Front Cover With artificial intelligence (AI), we learn the relationship between molecular structure and properties. In article number 1801367, Patrick Rinke and co‐workers build a deep learning AI spectroscopist that can make predictions for molecular spectra instantly and at no further cost for the end user. AI spectroscopy will greatly accelerate the way in which science is done and aid materials discovery and design. [Image: see text] John Wiley and Sons Inc. 2019-05-03 /pmc/articles/PMC6498127/ http://dx.doi.org/10.1002/advs.201970053 Text en © 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Inside Front Cover Ghosh, Kunal Stuke, Annika Todorović, Milica Jørgensen, Peter Bjørn Schmidt, Mikkel N. Vehtari, Aki Rinke, Patrick Machine Learning: Deep Learning Spectroscopy: Neural Networks for Molecular Excitation Spectra (Adv. Sci. 9/2019) |
title | Machine Learning: Deep Learning Spectroscopy: Neural Networks for Molecular Excitation Spectra (Adv. Sci. 9/2019) |
title_full | Machine Learning: Deep Learning Spectroscopy: Neural Networks for Molecular Excitation Spectra (Adv. Sci. 9/2019) |
title_fullStr | Machine Learning: Deep Learning Spectroscopy: Neural Networks for Molecular Excitation Spectra (Adv. Sci. 9/2019) |
title_full_unstemmed | Machine Learning: Deep Learning Spectroscopy: Neural Networks for Molecular Excitation Spectra (Adv. Sci. 9/2019) |
title_short | Machine Learning: Deep Learning Spectroscopy: Neural Networks for Molecular Excitation Spectra (Adv. Sci. 9/2019) |
title_sort | machine learning: deep learning spectroscopy: neural networks for molecular excitation spectra (adv. sci. 9/2019) |
topic | Inside Front Cover |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6498127/ http://dx.doi.org/10.1002/advs.201970053 |
work_keys_str_mv | AT ghoshkunal machinelearningdeeplearningspectroscopyneuralnetworksformolecularexcitationspectraadvsci92019 AT stukeannika machinelearningdeeplearningspectroscopyneuralnetworksformolecularexcitationspectraadvsci92019 AT todorovicmilica machinelearningdeeplearningspectroscopyneuralnetworksformolecularexcitationspectraadvsci92019 AT jørgensenpeterbjørn machinelearningdeeplearningspectroscopyneuralnetworksformolecularexcitationspectraadvsci92019 AT schmidtmikkeln machinelearningdeeplearningspectroscopyneuralnetworksformolecularexcitationspectraadvsci92019 AT vehtariaki machinelearningdeeplearningspectroscopyneuralnetworksformolecularexcitationspectraadvsci92019 AT rinkepatrick machinelearningdeeplearningspectroscopyneuralnetworksformolecularexcitationspectraadvsci92019 |