Cargando…
Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies
Multipotent mesenchymal stromal cells (MSC) have been widely explored for cell-based therapy of immune-mediated, inflammatory, and degenerative diseases, due to their immunosuppressive, immunomodulatory, and regenerative potentials. Preclinical studies and clinical trials have demonstrated promising...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6498654/ https://www.ncbi.nlm.nih.gov/pubmed/31046833 http://dx.doi.org/10.1186/s13287-019-1224-y |
Sumario: | Multipotent mesenchymal stromal cells (MSC) have been widely explored for cell-based therapy of immune-mediated, inflammatory, and degenerative diseases, due to their immunosuppressive, immunomodulatory, and regenerative potentials. Preclinical studies and clinical trials have demonstrated promising therapeutic results although these have been somewhat limited. Aspects such as low in vivo MSC survival in inhospitable disease microenvironments, requirements for ex vivo cell overexpansion prior to infusions, intrinsic differences between MSC and different sources and donors, variability of culturing protocols, and potency assays to evaluate MSC products have been described as limitations in the field. In recent years, priming approaches to empower MSC have been investigated, thereby generating cellular products with improved potential for different clinical applications. Herein, we review the current priming approaches that aim to increase MSC therapeutic efficacy. Priming with cytokines and growth factors, hypoxia, pharmacological drugs, biomaterials, and different culture conditions, as well as other diverse molecules, are revised from current and future perspectives. |
---|