Cargando…

Antimicrobial and antibiofilm activity of biopolymer-Ni, Zn nanoparticle biocomposites synthesized using R. mucilaginosa UANL-001L exopolysaccharide as a capping agent

Introduction: Global increase in the consumption of antibiotics has induced selective stress on wild-type microorganisms, pushing them to adapt to conditions of higher antibiotic concentrations, and thus an increased variety of resistant bacterial strains have emerged. Metal nanoparticles synthesize...

Descripción completa

Detalles Bibliográficos
Autores principales: Garza-Cervantes, Javier Alberto, Escárcega-González, C Enrique, Barriga Castro, E Díaz, Mendiola-Garza, G, Marichal-Cancino, Bruno Antonio, López-Vázquez, Mario Alberto, Morones-Ramirez, Jose Ruben
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6498977/
https://www.ncbi.nlm.nih.gov/pubmed/31118605
http://dx.doi.org/10.2147/IJN.S196470
_version_ 1783415721768779776
author Garza-Cervantes, Javier Alberto
Escárcega-González, C Enrique
Barriga Castro, E Díaz
Mendiola-Garza, G
Marichal-Cancino, Bruno Antonio
López-Vázquez, Mario Alberto
Morones-Ramirez, Jose Ruben
author_facet Garza-Cervantes, Javier Alberto
Escárcega-González, C Enrique
Barriga Castro, E Díaz
Mendiola-Garza, G
Marichal-Cancino, Bruno Antonio
López-Vázquez, Mario Alberto
Morones-Ramirez, Jose Ruben
author_sort Garza-Cervantes, Javier Alberto
collection PubMed
description Introduction: Global increase in the consumption of antibiotics has induced selective stress on wild-type microorganisms, pushing them to adapt to conditions of higher antibiotic concentrations, and thus an increased variety of resistant bacterial strains have emerged. Metal nanoparticles synthesized by green methods have been studied and proposed as potential antimicrobial agents against both wild-type and antibiotic-resistant strains; in addition, exopolysaccharides have been used as capping agent of metal nanoparticles due to their biocompatibility, reducing biological risks in a wide variety of applications. Purpose: In this work, we use an exopolysaccharide, from Rhodotorula mucilaginosa UANL-001L, an autochthonous strain from the Mexican northeast, as a capping agent in the synthesis of Zn, and Ni, nanoparticle biopolymer biocomposites. Materials and methods: To physically and chemically characterize the synthesized biocomposites, FT-IR, UV-Vs, TEM, SAED and EDS analysis were carried out. Antimicrobial and antibiofilm biological activity were tested for the biocomposites against two resistant clinical strains, a Gram-positive Staphylococcus aureus, and a Gram-negative Pseudomonas aeruginosa. Antimicrobial activity was determined using a microdilution assay whereas antibiofilm activity was analyzed through crystal violet staining. Results: Biocomposites composed of exopolysaccharide capped Zn and Ni metal nanoparticles were synthesized through a green synthesis methodology. The average size of the Zn and Ni nanoparticles ranged between 8 and 26 nm, respectively. The Ni-EPS biocomposites showed antimicrobial and antibiofilm activity against resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa at 3 and 2 mg/mL, respectively. Moreover, Zn-EPS biocomposites showed antimicrobial activity against resistant Staphylococcus aureus at 1 mg/mL. Both biocomposites showed no toxicity, as renal function showed no differences between treatments and control in the in vivo assays with male rats tests in this study at a concentration of 24 mg/kg of body weight. Conclusion: The exopolysaccharide produced by Rhodotorula mucilaginosa UANL-001L is an excellent candidate as a capping agent in the synthesis of biopolymer-metal nanoparticle biocomposites. Both Ni and Zn-EPS biocomposites demonstrate to be potential contenders as novel antimicrobial agents against both Gram-negative and Gram-positive clinically relevant resistant bacterial strains. Moreover, Ni-EPS biocomposites also showed antibiofilm activity, which makes them an interesting material to be used in different applications to counterattack global health problems due to the emergence of resistant microorganisms.
format Online
Article
Text
id pubmed-6498977
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Dove
record_format MEDLINE/PubMed
spelling pubmed-64989772019-05-22 Antimicrobial and antibiofilm activity of biopolymer-Ni, Zn nanoparticle biocomposites synthesized using R. mucilaginosa UANL-001L exopolysaccharide as a capping agent Garza-Cervantes, Javier Alberto Escárcega-González, C Enrique Barriga Castro, E Díaz Mendiola-Garza, G Marichal-Cancino, Bruno Antonio López-Vázquez, Mario Alberto Morones-Ramirez, Jose Ruben Int J Nanomedicine Original Research Introduction: Global increase in the consumption of antibiotics has induced selective stress on wild-type microorganisms, pushing them to adapt to conditions of higher antibiotic concentrations, and thus an increased variety of resistant bacterial strains have emerged. Metal nanoparticles synthesized by green methods have been studied and proposed as potential antimicrobial agents against both wild-type and antibiotic-resistant strains; in addition, exopolysaccharides have been used as capping agent of metal nanoparticles due to their biocompatibility, reducing biological risks in a wide variety of applications. Purpose: In this work, we use an exopolysaccharide, from Rhodotorula mucilaginosa UANL-001L, an autochthonous strain from the Mexican northeast, as a capping agent in the synthesis of Zn, and Ni, nanoparticle biopolymer biocomposites. Materials and methods: To physically and chemically characterize the synthesized biocomposites, FT-IR, UV-Vs, TEM, SAED and EDS analysis were carried out. Antimicrobial and antibiofilm biological activity were tested for the biocomposites against two resistant clinical strains, a Gram-positive Staphylococcus aureus, and a Gram-negative Pseudomonas aeruginosa. Antimicrobial activity was determined using a microdilution assay whereas antibiofilm activity was analyzed through crystal violet staining. Results: Biocomposites composed of exopolysaccharide capped Zn and Ni metal nanoparticles were synthesized through a green synthesis methodology. The average size of the Zn and Ni nanoparticles ranged between 8 and 26 nm, respectively. The Ni-EPS biocomposites showed antimicrobial and antibiofilm activity against resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa at 3 and 2 mg/mL, respectively. Moreover, Zn-EPS biocomposites showed antimicrobial activity against resistant Staphylococcus aureus at 1 mg/mL. Both biocomposites showed no toxicity, as renal function showed no differences between treatments and control in the in vivo assays with male rats tests in this study at a concentration of 24 mg/kg of body weight. Conclusion: The exopolysaccharide produced by Rhodotorula mucilaginosa UANL-001L is an excellent candidate as a capping agent in the synthesis of biopolymer-metal nanoparticle biocomposites. Both Ni and Zn-EPS biocomposites demonstrate to be potential contenders as novel antimicrobial agents against both Gram-negative and Gram-positive clinically relevant resistant bacterial strains. Moreover, Ni-EPS biocomposites also showed antibiofilm activity, which makes them an interesting material to be used in different applications to counterattack global health problems due to the emergence of resistant microorganisms. Dove 2019-04-10 /pmc/articles/PMC6498977/ /pubmed/31118605 http://dx.doi.org/10.2147/IJN.S196470 Text en © 2019 Garza-Cervantes et al. http://creativecommons.org/licenses/by-nc/3.0/ This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).
spellingShingle Original Research
Garza-Cervantes, Javier Alberto
Escárcega-González, C Enrique
Barriga Castro, E Díaz
Mendiola-Garza, G
Marichal-Cancino, Bruno Antonio
López-Vázquez, Mario Alberto
Morones-Ramirez, Jose Ruben
Antimicrobial and antibiofilm activity of biopolymer-Ni, Zn nanoparticle biocomposites synthesized using R. mucilaginosa UANL-001L exopolysaccharide as a capping agent
title Antimicrobial and antibiofilm activity of biopolymer-Ni, Zn nanoparticle biocomposites synthesized using R. mucilaginosa UANL-001L exopolysaccharide as a capping agent
title_full Antimicrobial and antibiofilm activity of biopolymer-Ni, Zn nanoparticle biocomposites synthesized using R. mucilaginosa UANL-001L exopolysaccharide as a capping agent
title_fullStr Antimicrobial and antibiofilm activity of biopolymer-Ni, Zn nanoparticle biocomposites synthesized using R. mucilaginosa UANL-001L exopolysaccharide as a capping agent
title_full_unstemmed Antimicrobial and antibiofilm activity of biopolymer-Ni, Zn nanoparticle biocomposites synthesized using R. mucilaginosa UANL-001L exopolysaccharide as a capping agent
title_short Antimicrobial and antibiofilm activity of biopolymer-Ni, Zn nanoparticle biocomposites synthesized using R. mucilaginosa UANL-001L exopolysaccharide as a capping agent
title_sort antimicrobial and antibiofilm activity of biopolymer-ni, zn nanoparticle biocomposites synthesized using r. mucilaginosa uanl-001l exopolysaccharide as a capping agent
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6498977/
https://www.ncbi.nlm.nih.gov/pubmed/31118605
http://dx.doi.org/10.2147/IJN.S196470
work_keys_str_mv AT garzacervantesjavieralberto antimicrobialandantibiofilmactivityofbiopolymerniznnanoparticlebiocompositessynthesizedusingrmucilaginosauanl001lexopolysaccharideasacappingagent
AT escarcegagonzalezcenrique antimicrobialandantibiofilmactivityofbiopolymerniznnanoparticlebiocompositessynthesizedusingrmucilaginosauanl001lexopolysaccharideasacappingagent
AT barrigacastroediaz antimicrobialandantibiofilmactivityofbiopolymerniznnanoparticlebiocompositessynthesizedusingrmucilaginosauanl001lexopolysaccharideasacappingagent
AT mendiolagarzag antimicrobialandantibiofilmactivityofbiopolymerniznnanoparticlebiocompositessynthesizedusingrmucilaginosauanl001lexopolysaccharideasacappingagent
AT marichalcancinobrunoantonio antimicrobialandantibiofilmactivityofbiopolymerniznnanoparticlebiocompositessynthesizedusingrmucilaginosauanl001lexopolysaccharideasacappingagent
AT lopezvazquezmarioalberto antimicrobialandantibiofilmactivityofbiopolymerniznnanoparticlebiocompositessynthesizedusingrmucilaginosauanl001lexopolysaccharideasacappingagent
AT moronesramirezjoseruben antimicrobialandantibiofilmactivityofbiopolymerniznnanoparticlebiocompositessynthesizedusingrmucilaginosauanl001lexopolysaccharideasacappingagent