Cargando…
Memory-Efficient Synaptic Connectivity for Spike-Timing- Dependent Plasticity
Spike-Timing-Dependent Plasticity (STDP) is a bio-inspired local incremental weight update rule commonly used for online learning in spike-based neuromorphic systems. In STDP, the intensity of long-term potentiation and depression in synaptic efficacy (weight) between neurons is expressed as a funct...
Autores principales: | Pedroni, Bruno U., Joshi, Siddharth, Deiss, Stephen R., Sheik, Sadique, Detorakis, Georgios, Paul, Somnath, Augustine, Charles, Neftci, Emre O., Cauwenberghs, Gert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6499189/ https://www.ncbi.nlm.nih.gov/pubmed/31110470 http://dx.doi.org/10.3389/fnins.2019.00357 |
Ejemplares similares
-
Neural and Synaptic Array Transceiver: A Brain-Inspired Computing Framework for Embedded Learning
por: Detorakis, Georgios, et al.
Publicado: (2018) -
Event-driven contrastive divergence for spiking neuromorphic systems
por: Neftci, Emre, et al.
Publicado: (2014) -
Stochastic Synapses Enable Efficient Brain-Inspired Learning Machines
por: Neftci, Emre O., et al.
Publicado: (2016) -
A 22-pJ/spike 73-Mspikes/s 130k-compartment neural array transceiver with conductance-based synaptic and membrane dynamics
por: Park, Jongkil, et al.
Publicado: (2023) -
Hardware-Efficient On-line Learning through Pipelined Truncated-Error Backpropagation in Binary-State Networks
por: Mostafa, Hesham, et al.
Publicado: (2017)