Cargando…
TEPIC 2—an extended framework for transcription factor binding prediction and integrative epigenomic analysis
SUMMARY: Prediction of transcription factor (TF) binding from epigenetics data and integrative analysis thereof are challenging. Here, we present TEPIC 2 a framework allowing for fast, accurate and versatile prediction, and analysis of TF binding from epigenetics data: it supports 30 species with bi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6499243/ https://www.ncbi.nlm.nih.gov/pubmed/30304373 http://dx.doi.org/10.1093/bioinformatics/bty856 |
Sumario: | SUMMARY: Prediction of transcription factor (TF) binding from epigenetics data and integrative analysis thereof are challenging. Here, we present TEPIC 2 a framework allowing for fast, accurate and versatile prediction, and analysis of TF binding from epigenetics data: it supports 30 species with binding motifs, computes TF gene and scores up to two orders of magnitude faster than before due to improved implementation, and offers easy-to-use machine learning pipelines for integrated analysis of TF binding predictions with gene expression data allowing the identification of important TFs. AVAILABILITY AND IMPLEMENTATION: TEPIC is implemented in C++, R, and Python. It is freely available at https://github.com/SchulzLab/TEPIC and can be used on Linux based systems. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. |
---|