Cargando…
CANDI: an R package and Shiny app for annotating radiographs and evaluating computer-aided diagnosis
MOTIVATION: Radiologists have used algorithms for Computer-Aided Diagnosis (CAD) for decades. These algorithms use machine learning with engineered features, and there have been mixed findings on whether they improve radiologists’ interpretations. Deep learning offers superior performance but requir...
Autores principales: | Badgeley, Marcus A, Liu, Manway, Glicksberg, Benjamin S, Shervey, Mark, Zech, John, Shameer, Khader, Lehar, Joseph, Oermann, Eric K, McConnell, Michael V, Snyder, Thomas M, Dudley, Joel T |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6499410/ https://www.ncbi.nlm.nih.gov/pubmed/30304439 http://dx.doi.org/10.1093/bioinformatics/bty855 |
Ejemplares similares
-
twoddpcr: an R/Bioconductor package and Shiny app for Droplet Digital PCR analysis
por: Chiu, Anthony, et al.
Publicado: (2017) -
Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study
por: Zech, John R., et al.
Publicado: (2018) -
Deep learning predicts hip fracture using confounding patient and healthcare variables
por: Badgeley, Marcus A., et al.
Publicado: (2019) -
ddPCRclust: an R package and Shiny app for automated analysis of multiplexed ddPCR data
por: Brink, Benedikt G, et al.
Publicado: (2018) -
UCSCXenaShiny: an R/CRAN package for interactive analysis of UCSC Xena data
por: Wang, Shixiang, et al.
Publicado: (2021)