Cargando…
Grayscale digital light processing 3D printing for highly functionally graded materials
Three-dimensional (3D) printing or additive manufacturing, as a revolutionary technology for future advanced manufacturing, usually prints parts with poor control of complex gradients for functional applications. We present a single-vat grayscale digital light processing (g-DLP) 3D printing method u...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6499595/ https://www.ncbi.nlm.nih.gov/pubmed/31058222 http://dx.doi.org/10.1126/sciadv.aav5790 |
Sumario: | Three-dimensional (3D) printing or additive manufacturing, as a revolutionary technology for future advanced manufacturing, usually prints parts with poor control of complex gradients for functional applications. We present a single-vat grayscale digital light processing (g-DLP) 3D printing method using grayscale light patterns and a two-stage curing ink to obtain functionally graded materials with the mechanical gradient up to three orders of magnitude and high resolution. To demonstrate the g-DLP, we show the direct fabrication of complex 2D/3D lattices with controlled buckling and deformation sequence, negative Poisson’s ratio metamaterial, presurgical models with stiffness variations, composites for 4D printing, and anti-counterfeiting 3D printing. |
---|