Cargando…
Modeling the potential range expansion of larger grain borer, Prostephanus truncatus (Coleoptera: Bostrichidae)
Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae), is a beetle that is a member of a family that is primarily comprised of wood-boring insects, including forest insect pests. It is native to Mexico and Central America, where it has adapted to become a pest of stored maize. It was accidentally...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6499817/ https://www.ncbi.nlm.nih.gov/pubmed/31053737 http://dx.doi.org/10.1038/s41598-019-42974-5 |
Sumario: | Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae), is a beetle that is a member of a family that is primarily comprised of wood-boring insects, including forest insect pests. It is native to Mexico and Central America, where it has adapted to become a pest of stored maize. It was accidentally introduced into Africa in late 1970s, where it quickly spread throughout the sub-Saharan region, perhaps aided by adaptation to alternate hosts and the ability to persist in non-agricultural habitats. We used the correlative modelling algorithm, MaxEnt, to identify global areas of potential high suitability based on the climate locations with documented populations. Predictions using a model trained in Mexico + Central America showed potential high climatic suitability extending north into the southern United States and southward into South America, including parts of Argentina, but predictions using a model built from African occurrences did not include those areas as highly suitable. However, there was general agreement in both models that large areas of the tropics in the Western Hemisphere and in Asia have climatic conditions that could support P. truncatus if it were to become established. The models also showed consistency in capturing potential suitability at sites not used to build a given model. Results can be used as an initial guide to establish surveillance programs to monitor for this insect in high risk areas where it is not currently found, and to proactively mitigate the biosecurity risk from P. truncatus. |
---|