Cargando…
Development and Validation of a Pathology Image Analysis-based Predictive Model for Lung Adenocarcinoma Prognosis - A Multi-cohort Study
Prediction of disease prognosis is essential for improving cancer patient care. Previously, we have demonstrated the feasibility of using quantitative morphological features of tumor pathology images to predict the prognosis of lung cancer patients in a single cohort. In this study, we developed and...
Autores principales: | Luo, Xin, Yin, Shen, Yang, Lin, Fujimoto, Junya, Yang, Yikun, Moran, Cesar, Kalhor, Neda, Weissferdt, Annikka, Xie, Yang, Gazdar, Adi, Minna, John, Wistuba, Ignacio Ivan, Mao, Yousheng, Xiao, Guanghua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6499884/ https://www.ncbi.nlm.nih.gov/pubmed/31053738 http://dx.doi.org/10.1038/s41598-019-42845-z |
Ejemplares similares
-
ConvPath: A software tool for lung adenocarcinoma digital pathological image analysis aided by a convolutional neural network
por: Wang, Shidan, et al.
Publicado: (2019) -
Immune regulatory markers of lepidic-pattern adenocarcinomas presenting as ground glass opacities
por: Nelson, David B., et al.
Publicado: (2020) -
Artificial Intelligence in Lung Cancer Pathology Image Analysis
por: Wang, Shidan, et al.
Publicado: (2019) -
Comprehensive analysis of lung cancer pathology images to discover tumor shape and boundary features that predict survival outcome
por: Wang, Shidan, et al.
Publicado: (2018) -
Molecular differences across invasive lung adenocarcinoma morphological subgroups
por: Ci, Bo, et al.
Publicado: (2020)