Cargando…

miR-21-5p protects IL-1β-induced human chondrocytes from degradation

OBJECTIVE: Osteoarthritis (OA) is a prevalent degenerative disease caused by various factors. MicroRNAs are important regulators in OA. MiR-21-5p expression is decreased in OA cartilage, but the effects of modulating miR-21-5p on cartilage regeneration are unknown. Therefore, our aim was to investig...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Hai, Yan, Xin, Zhang, Meng, Ji, Feng, Wang, Shouguo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6499971/
https://www.ncbi.nlm.nih.gov/pubmed/31053150
http://dx.doi.org/10.1186/s13018-019-1160-7
Descripción
Sumario:OBJECTIVE: Osteoarthritis (OA) is a prevalent degenerative disease caused by various factors. MicroRNAs are important regulators in OA. MiR-21-5p expression is decreased in OA cartilage, but the effects of modulating miR-21-5p on cartilage regeneration are unknown. Therefore, our aim was to investigate the effects of miR-21-5p on cartilage metabolism of OA chondrocytes. DESIGN: We used IL-1β (10 ng/ml) to mimic OA chondrocytes. OA chondrocytes were transfected with miR-21-5p, the gene expression of COL2A1, MMP13, and ADAMTS5 was detected by qPCR. At the same time, COL2A1, MMP13, and ADAMTS5 were analyzed at the protein level by Western blot. CCK8 measured the cell’s viability and SA-β-gal detected the cell’s senescence. RESULTS: Upregulation of miR-21-5p had increased COL2A1 expression and decreased MM P13 and ADAMTS5 expression, which were in accord with Western blot data. SA-β-gal activity significantly increased, the viability was decreased in OA chondrocytes, and upregulation of miR-21-5p can decrease the SA-β-gal activity and increase cell viability. CONCLUSION: MiR-21-5p might be a potential disease-modifying compound in OA, as it promotes hyaline cartilage production. These results provided that novel insights into the important function in OA pathological development.