Cargando…
Using natural language processing to extract structured epilepsy data from unstructured clinic letters: development and validation of the ExECT (extraction of epilepsy clinical text) system
OBJECTIVE: Routinely collected healthcare data are a powerful research resource but often lack detailed disease-specific information that is collected in clinical free text, for example, clinic letters. We aim to use natural language processing techniques to extract detailed clinical information fro...
Autores principales: | Fonferko-Shadrach, Beata, Lacey, Arron S, Roberts, Angus, Akbari, Ashley, Thompson, Simon, Ford, David V, Lyons, Ronan A, Rees, Mark I, Pickrell, William Owen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6500195/ https://www.ncbi.nlm.nih.gov/pubmed/30940752 http://dx.doi.org/10.1136/bmjopen-2018-023232 |
Ejemplares similares
-
Codifying unstructured data: A Natural Language Processing approach to extract rich data from clinical letters
por: Lacey, Arron, et al.
Publicado: (2017) -
Obtaining structured clinical data from unstructured data using natural language processing software
por: Lacey, Arron S, et al.
Publicado: (2017) -
Epilepsy mortality in Wales during COVID-19
por: Daniels, Helen, et al.
Publicado: (2022) -
Validating epilepsy diagnoses in routinely collected data
por: Fonferko-Shadrach, Beata, et al.
Publicado: (2017) -
Development and validation of an automated basal cell carcinoma histopathology information extraction system using natural language processing
por: Ali, Stephen R., et al.
Publicado: (2022)