Cargando…
Prophylactic Repetitive Treatment with the Herbal Medicine Kei-kyoh-zoh-soh-oh-shin-bu-toh Attenuates Oxaliplatin-Induced Mechanical Allodynia by Decreasing Spinal Astrocytes
Chemotherapeutic drugs typically induce peripheral neuropathy, which is a major dose-limiting side effect of these drugs and is difficult to manage. In this study, we examined whether the traditional herbal formulation Kei-kyoh-zoh-soh-oh-shin-bu-toh (KSOT) could relieve the mechanical allodynia ind...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6500670/ https://www.ncbi.nlm.nih.gov/pubmed/31118957 http://dx.doi.org/10.1155/2019/4029694 |
Sumario: | Chemotherapeutic drugs typically induce peripheral neuropathy, which is a major dose-limiting side effect of these drugs and is difficult to manage. In this study, we examined whether the traditional herbal formulation Kei-kyoh-zoh-soh-oh-shin-bu-toh (KSOT) could relieve the mechanical allodynia induced by chemotherapeutic drugs (oxaliplatin, paclitaxel, vincristine, and bortezomib) in mice. A single intraperitoneal injection of oxaliplatin, paclitaxel, vincristine, and bortezomib was used to induce mechanical allodynia, which peaked on days 10, 14, 14, and 12 after the injection, respectively. A single oral administration of KSOT did not inhibit mechanical allodynia after any of the treatments. However, prophylactic repetitive oral administrations of KSOT inhibited the exacerbation of mechanical allodynia induced by oxaliplatin but were not effective for allodynia induced by the other drugs. A single intraperitoneal injection of oxaliplatin did not alter the mRNA expression of the NMDA receptor NR2B in the spinal cord and that of neuregulin-1 in the sciatic nerve. In addition, the number of microglia in spinal dorsal horn did not increase in oxaliplatin-treated mice. However, the number of reactivated astrocytes in the spinal dorsal horn increased, which could be inhibited by repetitive administration of KSOT. These results suggest that prophylactic repetitive treatment of KSOT attenuates oxaliplatin-induced mechanical allodynia by decreasing the number of spinal astrocytes. |
---|