Cargando…
One amino acid change of Angiotensin II diminishes its effects on abdominal aortic aneurysm
Angiotensin (Ang) A is formed by the decarboxylation of the N terminal residue of AngII. The present study determined whether this one amino acid change impacted effects of AngII on abdominal aortic aneurysm (AAA) formation in mice. Computational analyses implicated that AngA had comparable binding...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Portland Press Ltd.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6500891/ https://www.ncbi.nlm.nih.gov/pubmed/30944205 http://dx.doi.org/10.1042/BSR20182055 |
_version_ | 1783416029318217728 |
---|---|
author | Wang, Ya Xu, Yinchuan Wu, Congqing Xia, Hongguang Wang, Yingchao Nan, Jinliang Chen, Jinghai Yu, Hong Zhu, Wei Shi, Peng Daugherty, Alan Lu, Hong S. Wang, Jian’an |
author_facet | Wang, Ya Xu, Yinchuan Wu, Congqing Xia, Hongguang Wang, Yingchao Nan, Jinliang Chen, Jinghai Yu, Hong Zhu, Wei Shi, Peng Daugherty, Alan Lu, Hong S. Wang, Jian’an |
author_sort | Wang, Ya |
collection | PubMed |
description | Angiotensin (Ang) A is formed by the decarboxylation of the N terminal residue of AngII. The present study determined whether this one amino acid change impacted effects of AngII on abdominal aortic aneurysm (AAA) formation in mice. Computational analyses implicated that AngA had comparable binding affinity to both AngII type 1 and 2 receptors as AngII. To compare effects of these two octapeptides in vivo, male low-density lipoprotein receptor (Ldlr) or apolipoprotein E (Apoe) deficient mice were infused with either AngII or AngA (1 μg/kg/min) for 4 weeks. While AngII infusion induced AAA consistently in both mouse strains, the equivalent infusion rate of AngA did not lead to AAA formation. We also determined whether co-infusion of AngA would influence AngII-induced aortic aneurysm formation in male Apoe(−/−) mice. Co-infusion of the same infusion rate of AngII and AngA did not change AngII-induced AAA formation. Since it was reported that a 10-fold higher concentration of AngA elicited comparable vasoconstrictive responses as AngII, we compared a 10-fold higher rate (10 μg/kg/min) of AngA infusion into male Apoe(−/−) mice with AngII (1 μg/kg/min). This rate of AngA led to abdominal aortic dilation in three of ten mice, but no aortic rupture, whereas the 10-fold lower rate of AngII infusion led to abdominal aortic dilation or rupture in eight of ten mice. In conclusion, AngA, despite only being one amino acid different from AngII, has diminished effects on aortic aneurysmal formation, implicating that the first amino acid of AngII has important pathophysiological functions. |
format | Online Article Text |
id | pubmed-6500891 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Portland Press Ltd. |
record_format | MEDLINE/PubMed |
spelling | pubmed-65008912019-06-11 One amino acid change of Angiotensin II diminishes its effects on abdominal aortic aneurysm Wang, Ya Xu, Yinchuan Wu, Congqing Xia, Hongguang Wang, Yingchao Nan, Jinliang Chen, Jinghai Yu, Hong Zhu, Wei Shi, Peng Daugherty, Alan Lu, Hong S. Wang, Jian’an Biosci Rep Research Articles Angiotensin (Ang) A is formed by the decarboxylation of the N terminal residue of AngII. The present study determined whether this one amino acid change impacted effects of AngII on abdominal aortic aneurysm (AAA) formation in mice. Computational analyses implicated that AngA had comparable binding affinity to both AngII type 1 and 2 receptors as AngII. To compare effects of these two octapeptides in vivo, male low-density lipoprotein receptor (Ldlr) or apolipoprotein E (Apoe) deficient mice were infused with either AngII or AngA (1 μg/kg/min) for 4 weeks. While AngII infusion induced AAA consistently in both mouse strains, the equivalent infusion rate of AngA did not lead to AAA formation. We also determined whether co-infusion of AngA would influence AngII-induced aortic aneurysm formation in male Apoe(−/−) mice. Co-infusion of the same infusion rate of AngII and AngA did not change AngII-induced AAA formation. Since it was reported that a 10-fold higher concentration of AngA elicited comparable vasoconstrictive responses as AngII, we compared a 10-fold higher rate (10 μg/kg/min) of AngA infusion into male Apoe(−/−) mice with AngII (1 μg/kg/min). This rate of AngA led to abdominal aortic dilation in three of ten mice, but no aortic rupture, whereas the 10-fold lower rate of AngII infusion led to abdominal aortic dilation or rupture in eight of ten mice. In conclusion, AngA, despite only being one amino acid different from AngII, has diminished effects on aortic aneurysmal formation, implicating that the first amino acid of AngII has important pathophysiological functions. Portland Press Ltd. 2019-05-03 /pmc/articles/PMC6500891/ /pubmed/30944205 http://dx.doi.org/10.1042/BSR20182055 Text en © 2019 The Author(s). http://creativecommons.org/licenses/by/4.0/This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY) (http://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Articles Wang, Ya Xu, Yinchuan Wu, Congqing Xia, Hongguang Wang, Yingchao Nan, Jinliang Chen, Jinghai Yu, Hong Zhu, Wei Shi, Peng Daugherty, Alan Lu, Hong S. Wang, Jian’an One amino acid change of Angiotensin II diminishes its effects on abdominal aortic aneurysm |
title | One amino acid change of Angiotensin II diminishes its effects on abdominal aortic aneurysm |
title_full | One amino acid change of Angiotensin II diminishes its effects on abdominal aortic aneurysm |
title_fullStr | One amino acid change of Angiotensin II diminishes its effects on abdominal aortic aneurysm |
title_full_unstemmed | One amino acid change of Angiotensin II diminishes its effects on abdominal aortic aneurysm |
title_short | One amino acid change of Angiotensin II diminishes its effects on abdominal aortic aneurysm |
title_sort | one amino acid change of angiotensin ii diminishes its effects on abdominal aortic aneurysm |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6500891/ https://www.ncbi.nlm.nih.gov/pubmed/30944205 http://dx.doi.org/10.1042/BSR20182055 |
work_keys_str_mv | AT wangya oneaminoacidchangeofangiotensiniidiminishesitseffectsonabdominalaorticaneurysm AT xuyinchuan oneaminoacidchangeofangiotensiniidiminishesitseffectsonabdominalaorticaneurysm AT wucongqing oneaminoacidchangeofangiotensiniidiminishesitseffectsonabdominalaorticaneurysm AT xiahongguang oneaminoacidchangeofangiotensiniidiminishesitseffectsonabdominalaorticaneurysm AT wangyingchao oneaminoacidchangeofangiotensiniidiminishesitseffectsonabdominalaorticaneurysm AT nanjinliang oneaminoacidchangeofangiotensiniidiminishesitseffectsonabdominalaorticaneurysm AT chenjinghai oneaminoacidchangeofangiotensiniidiminishesitseffectsonabdominalaorticaneurysm AT yuhong oneaminoacidchangeofangiotensiniidiminishesitseffectsonabdominalaorticaneurysm AT zhuwei oneaminoacidchangeofangiotensiniidiminishesitseffectsonabdominalaorticaneurysm AT shipeng oneaminoacidchangeofangiotensiniidiminishesitseffectsonabdominalaorticaneurysm AT daughertyalan oneaminoacidchangeofangiotensiniidiminishesitseffectsonabdominalaorticaneurysm AT luhongs oneaminoacidchangeofangiotensiniidiminishesitseffectsonabdominalaorticaneurysm AT wangjianan oneaminoacidchangeofangiotensiniidiminishesitseffectsonabdominalaorticaneurysm |