Cargando…

ECG Multilead QT Interval Estimation Using Support Vector Machines

This work reports a multilead QT interval measurement algorithm for a high-resolution digital electrocardiograph. The software enables off-line ECG processing including QRS detection as well as an accurate multilead QT interval detection algorithm using support vector machines (SVMs). Two fiducial p...

Descripción completa

Detalles Bibliográficos
Autores principales: Cuadros, Jhosmary, Dugarte, Nelson, Wong, Sara, Vanegas, Pablo, Morocho, Villie, Medina, Rubén
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6501152/
https://www.ncbi.nlm.nih.gov/pubmed/31178988
http://dx.doi.org/10.1155/2019/6371871
_version_ 1783416063384354816
author Cuadros, Jhosmary
Dugarte, Nelson
Wong, Sara
Vanegas, Pablo
Morocho, Villie
Medina, Rubén
author_facet Cuadros, Jhosmary
Dugarte, Nelson
Wong, Sara
Vanegas, Pablo
Morocho, Villie
Medina, Rubén
author_sort Cuadros, Jhosmary
collection PubMed
description This work reports a multilead QT interval measurement algorithm for a high-resolution digital electrocardiograph. The software enables off-line ECG processing including QRS detection as well as an accurate multilead QT interval detection algorithm using support vector machines (SVMs). Two fiducial points (Q(ini) and T(end)) are estimated using the SVM algorithm on each incoming beat. This enables segmentation of the current beat for obtaining the P, QRS, and T waves. The QT interval is estimated by updating the QT interval on each lead, considering shifting techniques with respect to a valid beat template. The validation of the QT interval measurement algorithm is attained using the Physionet PTB diagnostic ECG database showing a percent error of 2.60 ± 2.25 msec with respect to the database annotations. The usefulness of this software tool is also tested by considering the analysis of the ECG signals for a group of 60 patients acquired using our digital electrocardiograph. In this case, the validation is performed by comparing the estimated QT interval with respect to the estimation obtained using the Cardiosoft software providing a percent error of 2.49 ± 1.99 msec.
format Online
Article
Text
id pubmed-6501152
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-65011522019-06-09 ECG Multilead QT Interval Estimation Using Support Vector Machines Cuadros, Jhosmary Dugarte, Nelson Wong, Sara Vanegas, Pablo Morocho, Villie Medina, Rubén J Healthc Eng Research Article This work reports a multilead QT interval measurement algorithm for a high-resolution digital electrocardiograph. The software enables off-line ECG processing including QRS detection as well as an accurate multilead QT interval detection algorithm using support vector machines (SVMs). Two fiducial points (Q(ini) and T(end)) are estimated using the SVM algorithm on each incoming beat. This enables segmentation of the current beat for obtaining the P, QRS, and T waves. The QT interval is estimated by updating the QT interval on each lead, considering shifting techniques with respect to a valid beat template. The validation of the QT interval measurement algorithm is attained using the Physionet PTB diagnostic ECG database showing a percent error of 2.60 ± 2.25 msec with respect to the database annotations. The usefulness of this software tool is also tested by considering the analysis of the ECG signals for a group of 60 patients acquired using our digital electrocardiograph. In this case, the validation is performed by comparing the estimated QT interval with respect to the estimation obtained using the Cardiosoft software providing a percent error of 2.49 ± 1.99 msec. Hindawi 2019-04-15 /pmc/articles/PMC6501152/ /pubmed/31178988 http://dx.doi.org/10.1155/2019/6371871 Text en Copyright © 2019 Jhosmary Cuadros et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Cuadros, Jhosmary
Dugarte, Nelson
Wong, Sara
Vanegas, Pablo
Morocho, Villie
Medina, Rubén
ECG Multilead QT Interval Estimation Using Support Vector Machines
title ECG Multilead QT Interval Estimation Using Support Vector Machines
title_full ECG Multilead QT Interval Estimation Using Support Vector Machines
title_fullStr ECG Multilead QT Interval Estimation Using Support Vector Machines
title_full_unstemmed ECG Multilead QT Interval Estimation Using Support Vector Machines
title_short ECG Multilead QT Interval Estimation Using Support Vector Machines
title_sort ecg multilead qt interval estimation using support vector machines
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6501152/
https://www.ncbi.nlm.nih.gov/pubmed/31178988
http://dx.doi.org/10.1155/2019/6371871
work_keys_str_mv AT cuadrosjhosmary ecgmultileadqtintervalestimationusingsupportvectormachines
AT dugartenelson ecgmultileadqtintervalestimationusingsupportvectormachines
AT wongsara ecgmultileadqtintervalestimationusingsupportvectormachines
AT vanegaspablo ecgmultileadqtintervalestimationusingsupportvectormachines
AT morochovillie ecgmultileadqtintervalestimationusingsupportvectormachines
AT medinaruben ecgmultileadqtintervalestimationusingsupportvectormachines