Cargando…

Long Noncoding RNA MALAT1 Acts as a Competing Endogenous RNA to Regulate TGF-β2 Induced Epithelial-Mesenchymal Transition of Lens Epithelial Cells by a MicroRNA-26a-Dependent Mechanism

The aim of the present study was to characterize whether the long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)/miR-26a/Smad4 axis is involved in epithelial–mesenchymal transition (EMT) of lens epithelial cells (LECs). Primary human LECs were separated and cultured. M...

Descripción completa

Detalles Bibliográficos
Autor principal: Dong, Ning
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6501259/
https://www.ncbi.nlm.nih.gov/pubmed/31143769
http://dx.doi.org/10.1155/2019/1569638
_version_ 1783416080039936000
author Dong, Ning
author_facet Dong, Ning
author_sort Dong, Ning
collection PubMed
description The aim of the present study was to characterize whether the long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)/miR-26a/Smad4 axis is involved in epithelial–mesenchymal transition (EMT) of lens epithelial cells (LECs). Primary human LECs were separated and cultured. Microarray analysis showed that a total of 568 lncRNAs are differentially expressed in primary HLECs in the presence of TGF-β2 and MALAT1 is mostly significantly dysregulated lncRNAs, which is increased by nearly 17-fold. In addition, upregulation of MALAT1 and downregulation of miR-26a were detected in human posterior capsule opacification (PCO) attached LECs and the LECs obtained from patients with anterior polar cataracts by quantitative RT-PCR (qRT-PCR). Next, our results showed that TGF-β2 induces overexpression of EMT markers in primary HLECs via a MALAT1-dependent mechanism. The mechanism is that MALAT1 negatively regulates miR-26a and miR-26a directly targets Smad4 by luciferase reporter assays and RNA-binding protein immunoprecipitation assay. In summary, TGF-β2 induces MALAT1 overexpression, which in turn MALAT1 acts as a ceRNA targeting Smad4 by binding miR-26a and promotes the progression of EMT of LECs.
format Online
Article
Text
id pubmed-6501259
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-65012592019-05-29 Long Noncoding RNA MALAT1 Acts as a Competing Endogenous RNA to Regulate TGF-β2 Induced Epithelial-Mesenchymal Transition of Lens Epithelial Cells by a MicroRNA-26a-Dependent Mechanism Dong, Ning Biomed Res Int Research Article The aim of the present study was to characterize whether the long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)/miR-26a/Smad4 axis is involved in epithelial–mesenchymal transition (EMT) of lens epithelial cells (LECs). Primary human LECs were separated and cultured. Microarray analysis showed that a total of 568 lncRNAs are differentially expressed in primary HLECs in the presence of TGF-β2 and MALAT1 is mostly significantly dysregulated lncRNAs, which is increased by nearly 17-fold. In addition, upregulation of MALAT1 and downregulation of miR-26a were detected in human posterior capsule opacification (PCO) attached LECs and the LECs obtained from patients with anterior polar cataracts by quantitative RT-PCR (qRT-PCR). Next, our results showed that TGF-β2 induces overexpression of EMT markers in primary HLECs via a MALAT1-dependent mechanism. The mechanism is that MALAT1 negatively regulates miR-26a and miR-26a directly targets Smad4 by luciferase reporter assays and RNA-binding protein immunoprecipitation assay. In summary, TGF-β2 induces MALAT1 overexpression, which in turn MALAT1 acts as a ceRNA targeting Smad4 by binding miR-26a and promotes the progression of EMT of LECs. Hindawi 2019-04-22 /pmc/articles/PMC6501259/ /pubmed/31143769 http://dx.doi.org/10.1155/2019/1569638 Text en Copyright © 2019 Ning Dong. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Dong, Ning
Long Noncoding RNA MALAT1 Acts as a Competing Endogenous RNA to Regulate TGF-β2 Induced Epithelial-Mesenchymal Transition of Lens Epithelial Cells by a MicroRNA-26a-Dependent Mechanism
title Long Noncoding RNA MALAT1 Acts as a Competing Endogenous RNA to Regulate TGF-β2 Induced Epithelial-Mesenchymal Transition of Lens Epithelial Cells by a MicroRNA-26a-Dependent Mechanism
title_full Long Noncoding RNA MALAT1 Acts as a Competing Endogenous RNA to Regulate TGF-β2 Induced Epithelial-Mesenchymal Transition of Lens Epithelial Cells by a MicroRNA-26a-Dependent Mechanism
title_fullStr Long Noncoding RNA MALAT1 Acts as a Competing Endogenous RNA to Regulate TGF-β2 Induced Epithelial-Mesenchymal Transition of Lens Epithelial Cells by a MicroRNA-26a-Dependent Mechanism
title_full_unstemmed Long Noncoding RNA MALAT1 Acts as a Competing Endogenous RNA to Regulate TGF-β2 Induced Epithelial-Mesenchymal Transition of Lens Epithelial Cells by a MicroRNA-26a-Dependent Mechanism
title_short Long Noncoding RNA MALAT1 Acts as a Competing Endogenous RNA to Regulate TGF-β2 Induced Epithelial-Mesenchymal Transition of Lens Epithelial Cells by a MicroRNA-26a-Dependent Mechanism
title_sort long noncoding rna malat1 acts as a competing endogenous rna to regulate tgf-β2 induced epithelial-mesenchymal transition of lens epithelial cells by a microrna-26a-dependent mechanism
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6501259/
https://www.ncbi.nlm.nih.gov/pubmed/31143769
http://dx.doi.org/10.1155/2019/1569638
work_keys_str_mv AT dongning longnoncodingrnamalat1actsasacompetingendogenousrnatoregulatetgfb2inducedepithelialmesenchymaltransitionoflensepithelialcellsbyamicrorna26adependentmechanism