Cargando…
A deep learning approach to the structural analysis of proteins
Deep learning (DL) algorithms hold great promise for applications in the field of computational biophysics. In fact, the vast amount of available molecular structures, as well as their notable complexity, constitutes an ideal context in which DL-based approaches can be profitably employed. To expres...
Autores principales: | Giulini, Marco, Potestio, Raffaello |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6501347/ https://www.ncbi.nlm.nih.gov/pubmed/31065348 http://dx.doi.org/10.1098/rsfs.2019.0003 |
Ejemplares similares
-
A Deep Graph Network–Enhanced Sampling Approach to Efficiently Explore the Space of Reduced Representations of Proteins
por: Errica, Federico, et al.
Publicado: (2021) -
An Information-Theory-Based Approach for Optimal Model
Reduction of Biomolecules
por: Giulini, Marco, et al.
Publicado: (2020) -
A journey through mapping space: characterising the statistical and metric properties of reduced representations of macromolecules
por: Menichetti, Roberto, et al.
Publicado: (2021) -
From System Modeling to System Analysis: The Impact of Resolution Level and Resolution Distribution in the Computer-Aided Investigation of Biomolecules
por: Giulini, Marco, et al.
Publicado: (2021) -
Searching the Optimal Folding Routes of a Complex Lasso Protein
por: Perego, Claudio, et al.
Publicado: (2019)