Cargando…
Deregulated MicroRNA Signature Following Glioblastoma Irradiation
Glioblastoma (GBM), the most common and aggressive brain tumor in adults, shows resistance to treatment, particularly radiotherapy. One method for effective treatment is using a group of radiosensitizers that make tumor cells responsive to radiotherapy. A class of molecules whose expression is affec...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6501491/ https://www.ncbi.nlm.nih.gov/pubmed/31046428 http://dx.doi.org/10.1177/1073274819847226 |
Sumario: | Glioblastoma (GBM), the most common and aggressive brain tumor in adults, shows resistance to treatment, particularly radiotherapy. One method for effective treatment is using a group of radiosensitizers that make tumor cells responsive to radiotherapy. A class of molecules whose expression is affected by radiotherapy is the microRNAs (miRNAs) that present promising regulators of the radioresponse. Eighteen miRNAs (miR-26a, -124, -128, -135b, -145, -153, -181a/b, -203, -21, -210, -212, -221/222, -223, -224, -320, and -590), involved in the pathogenesis of GBM and its radioresponsive state, were reviewed to identify their role in GBM and their potential as radiosensitizing agents. MicroRNAs-26a, -124, -128, -145, -153, -181a/b, -203, -221/222, -223, -224, -320, and -590 promoted GBM radiosensitivity, while microRNAs-135b, -21, -210, and -212 encouraged radioresistance. Ectopic overexpression of the radiosensitivity promoting miRNAs and knockdown of the radioresistant miRNAs represent a prospective radiotherapy enhancement opportunity. This offers a glimmer of hope for a group of the most unfortunate patients known to medicine. |
---|