Cargando…
Combining UAV-based hyperspectral imagery and machine learning algorithms for soil moisture content monitoring
Soil moisture content (SMC) is an important factor that affects agricultural development in arid regions. Compared with the space-borne remote sensing system, the unmanned aerial vehicle (UAV) has been widely used because of its stronger controllability and higher resolution. It also provides a more...
Autores principales: | Ge, Xiangyu, Wang, Jingzhe, Ding, Jianli, Cao, Xiaoyi, Zhang, Zipeng, Liu, Jie, Li, Xiaohang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6501779/ https://www.ncbi.nlm.nih.gov/pubmed/31110930 http://dx.doi.org/10.7717/peerj.6926 |
Ejemplares similares
-
Machine-learning-based quantitative estimation of soil organic carbon content by VIS/NIR spectroscopy
por: Ding, Jianli, et al.
Publicado: (2018) -
Prediction of soil moisture using BiGRU-LSTM model with STL decomposition in Qinghai–Tibet Plateau
por: Zhao, Lufei, et al.
Publicado: (2023) -
Classification of Toona sinensis Young Leaves Using Machine Learning and UAV-Borne Hyperspectral Imagery
por: Wu, Haoran, et al.
Publicado: (2022) -
Estimation of Soil Salt Content and Organic Matter on Arable Land in the Yellow River Delta by Combining UAV Hyperspectral and Landsat-8 Multispectral Imagery
por: Sun, Mingyue, et al.
Publicado: (2022) -
Estimating soil moisture content under grassland with hyperspectral data using radiative transfer modelling and machine learning
por: Döpper, Veronika, et al.
Publicado: (2022)